吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 778-788.doi: 10.13229/j.cnki.jdxbgxb201703013

• • 上一篇    下一篇

竹板增强胶合木梁受弯性能

郭楠1, 张平阳1, 左煜2, 左宏亮1   

  1. 1.东北林业大学 土木工程学院,哈尔滨 150040;
    2.哈尔滨工业大学 建筑学院,哈尔滨 150006
  • 收稿日期:2016-12-28 出版日期:2017-05-20 发布日期:2017-05-20
  • 作者简介:郭楠(1978-),男,副教授,博士.研究方向:现代木结构.E-mail:snowguonan@163.com
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2572015CB29); 国家留学基金委项目(201606605044)

Bending performance of glue-lumber beam reinforced by bamboo plyboard

GUO Nan1, ZHANG Ping-yang1, ZUO Yu2, ZUO Hong-liang1   

  1. 1.College of Civil Engineering, Northeast Forestry University, Harbin 150040, China;
    2.College of Architecture, Harbin Institute of Technology, Harbin 150006, China
  • Received:2016-12-28 Online:2017-05-20 Published:2017-05-20

摘要: 对21根竹板增强胶合木梁的抗弯性能进行了研究,对比分析了竹板层数和厚度影响下木梁破坏形态、极限荷载和跨中挠度等参数。试验结果表明,与纯胶合木梁相比,底部粘贴1~3层胶合竹板梁的破坏荷载提高了16.8%~45.9%,随着竹板层数的增加,梁变形能力增强,但层间错动明显,致使梁的承载力不升反降;竹板总厚度不变,每层竹板厚度的减小对竹板增强胶合木梁的破坏形态无明显影响,整体变形明显,延性提高;竹板增强胶合木梁跨中截面应变符合平截面假定,破坏时梁顶达到抗压强度且有一定塑性高度,梁底达到极限拉应变。提出了竹板增强胶合木梁抗弯承载力计算公式,验证了公式的合理性,并给出了竹板最佳厚度比。

关键词: 土木工程, 竹板增强胶合木梁, 抗弯性能, 破坏形态, 承载力计算

Abstract: The bending performances of 21 bamboo plyboard enhanced glue-lumber beams were studied. Under the effects of bamboo plyboard layer number and thickness, the timber beam failure modes, ultimate load and mid-span deflection parameters were analyzed. Experimental results show that, compared to pure glue-lumber beams, the failure load of beams, with 1-3 layers of scuffing bamboo plyboard on the bottom, is increased by 16.8% ~ 45.9%. With the increase in the number of bamboo plyboard layers, the deformation capacity of the beams becomes stronger. However, the intercalated sliding becomes more obvious, which makes the bearing capacity of the beams decreases instead of increases. When the total thickness of the bamboo plyboard remains the same, the decrease in the thickness of each layer bamboo plyboard has no obvious influence on the failure modes of glue-lumber beam reinforced by bamboo plyboard. The total deformation is obvious and the ductility increases. The span-section strain of reinforced glue-lumber boards accords with the plane section assumption. The glue-lumber on the top of the beams reaches the compressive strength and has a certain plastic height when failure occurs. The scuffing-bamboo on the bottom of the beams reaches to the ultimate tensile strain. A formula to calculate the flexural capacity of the bamboo plyboard enhanced glue-lumber beams was put forward, which was verified. The optimum ratio of the thickness of the bamboo plyboard was given.

Key words: civil engineering, bamboo plyboard enhanced glue-lumber beam, bending performance, failure mode, bearing capacity calculation

中图分类号: 

  • TU366.3
[1] 杨会峰,刘伟庆. FRP增强胶合木梁的受弯性能研究[J]. 建筑结构学报,2007,28(1):64-71.
Yang Hui-feng, Liu Wei-qing. Study on flexural behavior of FRP reinforced glulam beams[J]. Journal of Building Structures,2007, 28(1):64-71.
[2] 淳庆,潘建伍,包兆鼎. 碳-芳混杂纤维布加固木梁抗弯性能试验研究[J]. 东南大学学报:自然科学版,2011, 41(1):168-173.
Chun Qing, Pan Jian-wu, Bao Zhao-ding. Experiments study on bending behavior of timber beams strengthened with CFRP/AFRP hybrid FRP sheet[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(1):168-173.
[3] 王全凤,李飞,陈浩军,等. 玄武岩纤维布加固木梁抗弯性能的试验研究与有限元分析[J]. 工业建筑,2010,40(4):126-130.
Wang Quan-feng, Li Fei, Chen Hao-jun, et al. Experimental study on flexural behavior of timber beams reinforced with BFRP sheets[J]. Industrial Construction, 2010, 40(4):126-130.
[4] 谢启芳,赵鸿铁,薛建阳,等. 碳纤维布加固木梁抗弯性能的试验研究[J]. 工业建筑,2007,37(7):104-107.
Xie Qi-fang, Zhao Hong-tie, Xue Jian-yang, et al. Experimental study on behavior of timber beams strengthened with CFRP sheets[J]. Industrial Construction, 2007, 37(7):104-107.
[5] 杨昕卉,薛伟,郭楠.钢板增强胶合木梁的抗弯性能[J].吉林大学学报:工学版,2017,47(2):468-477.
Yang Xin-hui,Xue Wei,Guo Nan. Bending performance of glued-lumber beam reinforced with steel plate[J]. Journal of Jilin University(Engineering and Technology Edition),2017,47(2):468-477.
[6] 许清风,朱雷,陈建飞,等. 粘贴钢板加固木梁试验研究[J]. 中南大学学报:自然科学版,2012,43(3):1153-1159.
Xu Qing-feng, Zhu Lei, Chen Jian-fei, et al. Experiments study on behavior of timber beams strengthened with steel plates[J]. Journal of Central South University(Science and Technology),2012, 43(3):1153-1159.
[7] 许清风,朱雷,陈建飞,等. 内嵌CFRP筋/片加固木梁受弯性能试验研究[J]. 建筑结构学报,2012,33(8):149-156.
Xu Qing-feng, Zhu Lei, Chen Jian-fei, et al. Experiments study on flexural behavior of strengthening timber beams with near surface mounted CFRP bars and strips[J]. Journal of Building Structures, 2012, 33(8):149-156.
[8] Ribeiro Alfredo S, de Jesus Abílio M P, Lima António M,et al. Study of strengthening solutions for glued-laminated wood beams of maritime pine wood[J]. Construction and Building Materials,2009, 23(8):2738-2745.
[9] 左宏亮,卜大伟,郭楠,等. 玄武岩纤维复合材料对胶合木梁受弯性能的影响[J]. 东北林业大学学报,2015, 43(4):91-95.
Zuo Hong-liang, Bu Da-wei, Guo Nan, et al. Effect of basalt fiber composite on flexural behavior of glulam beams[J]. Journal of Northeast Forestry University, 2015, 43(4):91-95.
[10] Manalo A C, Aravinthan T, Karunasena W. Flexural behaviour of glue-laminated fibre composite sandwich beams[J]. Composite Structures,2010, 92(11):2703-2711.
[11] Huang Dong-sheng, Zhou Ai-ping, Bian Yu-ling. Experimental and analytical study on the nonlinear bending of parallel strand bamboo beams[J].Construction and Building Materials,2013,44:585-592.
[12] Mujiman, Henricus Priyosulistyo, Djoko Sulistyo,et al. Influence of shape and dimensions of lamina on shear and bending strength of vertically glue laminated bamboo beam[J]. Procedia Engineering,2014,95:22-30.
[13] Issa Camille A, Kmeid Ziad. Advanced wood engineering: glulam beams[J]. Original Research Article Construction and Building Materials,2005, 19(2):99-106.
[14] Toratti Tomi,Schnabl Simon, Turk Goran. Reliability analysis of a glulam beam[J]. Original Research Article Structural Safety,2007, 29(4):279-293.
[15] Joints with carbon fiber-reinforced polymer rods[J]. Journal of Composites for Construction,2005, 9(4):337-347.
[1] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[2] 王腾, 周茗如, 马连生, 乔宏霞. 基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[3] 杨昕卉, 薛伟, 郭楠. 钢板增强胶合木梁的抗弯性能[J]. 吉林大学学报(工学版), 2017, 47(2): 468-477.
[4] 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[5] 郭学东, 马立军, 张云龙. 集中力作用下考虑剪切滑移效应的双层结合面组合梁解析解[J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
[6] 赵玉, 李衍赫, 张培, 赵科, 刘伟超. 粘土的动力特性试验[J]. 吉林大学学报(工学版), 2015, 45(6): 1791-1797.
[7] 侯忠明, 王元清, 夏禾, 张天申. 移动荷载作用下的钢-混简支结合梁动力响应[J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427.
[8] 苏迎社, 杨媛媛. 高温对建筑混凝土材料抗震抗压的作用及原理[J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442.
[9] 王甲春, 阎培渝. 海洋环境下钢筋混凝土中钢筋锈蚀的概率[J]. 吉林大学学报(工学版), 2014, 44(2): 352-357.
[10] 张大山, 董毓利, 吴亚平. 混凝土单向板的受拉薄膜效应计算[J]. 吉林大学学报(工学版), 2013, 43(05): 1253-1257.
[11] 柴寿喜, 王沛, 魏丽. 以峰值轴向应变评价麦秸秆和石灰加筋固化盐渍土的抗变形性能 [J]. , 2012, (03): 645-650.
[12] 李春良, 王国强, 赵凯军, 朱春凤. 地面荷载作用盾构隧道纵向力学行为[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 180-184.
[13] 刘寒冰, 郑继光, 邹品德. 叠合式钢筋混凝土圆截面短柱偏心受压承载力计算[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163.
[14] 潘明远, 姚继涛. 钢筋混凝土结构构件的可靠性[J]. 吉林大学学报(工学版), 2010, 40(增刊): 218-0221.
[15] 郑文忠, 万夫雄, 李时光. 用无机胶粘贴CFRP布加固混凝土板火灾后受力性能[J]. 吉林大学学报(工学版), 2010, 40(05): 1244-1249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!