吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 771-777.doi: 10.13229/j.cnki.jdxbgxb201703012

• • 上一篇    下一篇

真三轴加载条件下混凝土的力学特性

李静, 王哲   

  1. 北京交通大学 土木建筑工程学院,北京 100044
  • 出版日期:2017-05-20 发布日期:2017-05-20
  • 通讯作者: 王哲(1961-),男,研究员,博士.研究方向:混凝土本构关系.E-mail:zhwang@bjtu.edu.cn
  • 作者简介:李静(1984-),女,博士研究生.研究方向:多轴应力下混凝土本构关系.E-mail:314666466@qq.com
  • 基金资助:
    国家自然科学基金项目(51279003)

Mechanical characteristics of concrete under true triaxial loading condition

LI Jing, WANG Zhe   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Online:2017-05-20 Published:2017-05-20

摘要: 采用真三轴设备对100 mm×100 mm×100 mm的立方体混凝土试块进行静态加载。首先,保持三个轴向的应力相同,施加应力到设计值p。然后,在保持最小主应力(Z轴)恒定并且X轴应变速率与Y轴应变速率之比也恒定的条件下,单调地增加Y轴应变。通过这种复杂加载试验,研究了混凝土的强度和体积特征。结果表明:在应力-应变混合路径加载的真三轴试验下,混凝土的抗压强度随着最小主应力的增大而增大,随着加载应变速率比的增大而线性递减,都大于单轴抗压强度,最高可达单轴抗压强度的3.4倍;混凝土试块在只经历静水压的加载历史时,初始剪切模量不受影响,不同组剪应力-剪应变关系曲线初始段都存在重合现象。峰值体积应变随着最小主应力和应变速率比的增大而增大,体积先减小后增大,出现扩容现象; 当最小主应力为10 MPa时,混凝土的峰值强度和峰值体积压应变几乎同时出现,并随着最小主应力的增大,两者出现的时间间隔增大,峰值体应变滞后。

关键词: 土木建筑工程, 复合材料, 混凝土, 应力-应变混合路径, 真三轴, 体积应变

Abstract: The mechanical behavior of concrete specimens (cube, L=100 mm) subjected to a mixed path of stress and strain loading was investigated. The specimens were statically loaded into a true triaxial apparatus. First, the stresses in all three directions were simultaneously increased to a specified value p. Then, the strain in Y axis was increased monotonically while maintaining a constant Z-axial stress and a constant strain rate ratio between Y and X axes. The experimental results show that the compressive strengths of the concrete increase with the minimum principal stress, and decrease linearly with the increase in the strain rate ratio, which are higher than uniaxial compressive strength, and the maximum value is 3.4 times of the uniaxial compressive strength. The hydrostatic pressure does not affect the initial shear modulus when the concrete specimens experience only monotonic increase in hydrostatic pressure, and a coinciding part is found in the curves of shear stress versus shear strsin for different experimental groups. The peak value of volumetric strain increases with the minimum principal stress and the strain rate ratio. The volume of the concrete specimen decreases first and then increases, volumetric dilatancy phenomenon occurs. The peak strength and peak volumetric strain appear at the same time when the minimum principal stress is 10 MPa. Then as the minimum principal stress increases the time interval between the peak strength and peak volumetric strain increases, and the peak volumetric strain appears latter.

Key words: civil engineering, composite material, concrete, mixed load path of both stress and strain, true triaxial, volumetric strain

中图分类号: 

  • TU528
[1] Hussein A, Marzouk H. Behavior of high-strength concrete under biaxial stresses[J]. Materials Journal,2000,97(1):27-36.
[2] 宋玉普,段小亮,施林林. 大骨料混凝土在动态三轴拉压压应力状态下的强度[J]. 建筑材料学报,2015,18(5):721-726.
Song Yu-pu, Duan Xiao-liang, Shi Lin-lin. Strength of large aggregate concrete under dynamic triaxial compression-compression-tension stress state[J]. Journal of Building Materials,2015,18(5):721-726.
[3] 苏益声,孟二从,陈宗平, 等. 高温后再生混凝土三轴受压本构关系[J]. 建筑材料学报,2015,18(6):946-952.
Su Yi-sheng, Meng Er-cong, Chen Zong-ping, et al. Constitutive relations of recycled concrete under triaxial compression after high temperature[J]. Journal of Building Materials,2015,18(6):946-952.
[4] 陈宗平,应武挡,陈宇良,等. 短龄期再生混凝土三轴受压力学性能及其本构关系[J]. 建筑材料学报,2015,18(6):935-940.
Chen Zong-ping,Ying Wu-dang,Chen Yu-liang,et al. Mechanical properties and constitutive relationship of short age recycled coarse aggregate concrete under triaxial compression[J]. Journal of Building Materials,2015,18(6):935-940.
[5] 王哲,宋玉普,尚仁杰. 应力偏量加载条件下混凝土力学行为试验研究[J]. 水利学报,2011,42(6):648-655.
Wang Zhe,Song Yu-pu,Shang Ren-jie. Experimental research on concrete mechanical behavior upon loading on deviatoric planes[J]. Journal of Hydraulic Engineering,2011,42(6):648-655.
[6] Imran I, Pantazopoulou S J. Experimental study of plain concrete under triaxial stress[J]. Materials Journal,1996,93(6):589-601.
[7] Gabet T, Malécot Y, Daudeville L. Triaxial behaviour of concrete under high stresses: Influence of the loading path on compaction and limit states[J]. Cement and Concrete Research,2008,38(3):403-412.
[8] 王哲. 沿应变路径准静态加载时混凝土的极限状态现象[J]. 北京交通大学学报,2010,34(1):30-34.
Wang Zhe. Phenomena of concrete limit state under quasi-static loading along strain paths[J]. Journal of Beijing Jiaotong University,2010,34(1),30-34.
[9] 宋玉普,赵国藩,靳国礼,等. 平面应变状态下的混凝土变形和强度特性[J]. 水利学报,1990,21(5):22-29.
Song Yu-pu,Zhao Guo-fan,Jin Guo-li,et al. Behaviors of deformation and strength of concrete under plane strain condition[J]. Journal of Hydraulic Engineering,1990,21(5):22-29.
[10] 王哲. 平面应变状态下混凝土力学行为的三轴试验研究[J]. 土木工程学报,2012,45(10):62-71.
Wang Zhe. Triaxial experimental study of the mechanical behavior of concrete in plane strain state[J]. China Civil Engineering Journal,2012,45(10):62-71.
[11] 李杰,任晓丹,杨卫忠. 混凝土二维本构关系试验研究[J]. 土木工程学报, 2007, 40(4): 6-12.
Li Jie,Ren Xiao-dan,Yang Wei-zhong. Experimental study on 2-D constitutive relationship for concrete[J]. China Civil Engineering Journal,2007,40(4):6-12.
[12] 王四巍,王畅,高丹盈. 真三轴应力下塑性混凝土的强度和扩容[J]. 建筑材料学报,2012,15(4):548-552.
Wang Si-wei,Wang Chang,Gao Dan-ying. Strength and dilatancy of plastic concrete in true triaxial tests[J]. Journal of Building Materials,2012,15(4):548-552.
[13] 王四巍,王忠福,潘旭威,等. 多轴应力下塑性混凝土峰值后变形特征[J]. 建筑材料学报,2014,17(4):654-658.
Wang Si-wei,Wang Zhong-fu,Pan Xu-wei,et al. Post peak deformation characteristics of plastic concrete under multiaxial stress state[J]. Journal of Building Materials,2014,17(4):654-658.
[14] Ren Xiao-dan,Yang Wei-zhong,Zhou Yong,et al. Behavior of high-performance concrete under uniaxial and biaxial loading[J]. Materials Journal,2008,105(6):548-557.
[15] 余自若,安明喆,王志建. 双轴压下活性粉末混凝土的力学性能[J]. 建筑材料学报,2011,14(3):305-309.
Yu Zi-ruo,An Ming-zhe,Wang Zhi-jian. Mechanical properties of reactive powder concrete under biaxial compression[J]. Journal of Building Materials,2011,14(3):305-309.
[16] 李木国,张群,王静,等. 大型液压伺服混凝土静动三轴试验机[J]. 大连理工大学学报,2003,43(6):812-817.
Li Mu-guo,Zhang Qun,Wang Jing,et al. Large scale static and dynamic concrete hydraulic servo triaxial testing equipment[J]. Journal of Dalian University of Technology,2003,43(6):812-817.
[17] 姚家伟,宋玉普,张众. 普通混凝土三轴压强度和变形试验研究[J]. 建筑科学,2011,27(7):28-31.
Yao Jia-wei,Song Yu-pu,Zhang Zhong. Experimental study on strength and deformation characteristic of normal concrete under triaxial compression[J]. Building Science,2011,27(7):28-31.
[1] 宋军, 石雪飞, 阮欣. 大体积混凝土热学参数识别的优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1418-1425.
[2] 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1426-1435.
[3] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[4] 胡志清, 郑会会, 徐亚男, 张春玲, 党停停. 表面微沟槽对Al/CFRP胶结性能的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[5] 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[6] 刘耀辉, 陈乔旭, 宋雨来, 沈艳东. 火山灰-SBS、胶粉-SBS和SBS改性沥青压缩变形行为及机理[J]. 吉林大学学报(工学版), 2017, 47(6): 1861-1867.
[7] 郑一峰, 毛健, 梁世忠, 郑传峰. 高填土场地考虑土体固结的桩基负摩阻力[J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081.
[8] 杨悦, 李雪, 徐晓丹. Ti-B-C-N粉末烧结的微观组织及其性能[J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
[9] 陈江义, 刘保元. 纤维断裂损伤对复合材料板中导波频散特性的影响[J]. 吉林大学学报(工学版), 2017, 47(1): 180-184.
[10] 于天来, 刘兴国, 姚爽, 穆罕默德马苏. 碳纤维筋体外预应力加固钢筋混凝土梁的疲劳性能[J]. 吉林大学学报(工学版), 2016, 46(6): 1867-1873.
[11] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[12] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[13] 彭爱东, 刘贺男. 基于水包油微乳液法的方形苝纳米颗粒的合成与荧光性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1583-1586.
[14] 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[15] 刘利萍, 刘勇兵, 姬连峰, 曹占义, 杨晓红. 原位颗粒增强钛基复合材料高温流变行为[J]. 吉林大学学报(工学版), 2016, 46(4): 1197-1201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!