吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1121-1129.doi: 10.13229/j.cnki.jdxbgxb201704016

• 论文 • 上一篇    下一篇

基于齿条近似法的谐波传动空间齿廓设计方法

王家序1, 袁攀1, 谭春林2, 何永强2, 李俊阳1, 肖科1   

  1. 1.重庆大学 机械传动国家重点实验室, 重庆 400044;
    2.北京空间飞行器总体设计部,北京 100094
  • 收稿日期:2016-03-10 出版日期:2017-07-20 发布日期:2017-07-20
  • 作者简介:王家序(1954-),男,教授,博士生导师.研究方向:机器人驱动机构.E-mail:jxwang@cqu.edu.cn
  • 基金资助:
    “973”国家重点基础研究发展计划项目(2013CB733000); “863”国家高技术研究发展计划项目(2015AA043001).

Spatial tooth profile design of harmonic drive by rack approximation method

WANG Jia-xu1, YUAN Pan1, TAN Chun-lin2, HE Yong-qiang2, LI Jun-yang1, XIAO Ke1   

  1. 1.State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China;
    2.China Academy of Space Technology, Beijing 100094, China
  • Received:2016-03-10 Online:2017-07-20 Published:2017-07-20

摘要: 针对渐开线谐波传动齿廓设计中啮合侧隙过大造成传动精度降低以及柔轮轴向偏斜产生齿廓干涉等问题,提出一种基于齿条近似法的谐波传动齿廓设计方法。该方法考虑了实际啮合情况,利用齿条近似法对柔轮齿相对于刚轮齿的实际运动轨迹进行近似齿廓设计与修形。并考虑了柔轮在装配变形下的偏斜,对柔轮齿在主截面以外的其他截面进行空间齿廓设计。结果表明:基于齿条近似法设计的谐波传动齿廓啮合侧隙很小并且啮合范围很广,按照线性关系改变柔轮齿根处壁厚可以实现柔轮齿在空载状态下任意截面的无干涉啮合。

关键词: 机械设计, 谐波传动, 齿条近似法, 啮合理论, 空间齿廓

Abstract: To solve the problems of transmission precision reduction caused by large meshing backslash and tooth profile interference caused by axial coning in the design of involute tooth profile of harmonic drive, a tooth profile new design method of harmonic drive based on rack approximation method was presented. The method considers the actual meshing situation and takes advantage of rack approximation design to design and correct the approximate tooth profile based on the actual movement route of flexspline relative to circular spline. The flexspline coning caused by assembly deformation is also considered to design the spatial tooth profile of flexspline at sections other than the main section. Results show that the tooth profile of harmonic drive designed by the proposed method has very small backslash and very wide-range meshing. Non-interfering engagement at arbitrary section can be achieved under no-load condition by changing the thickness of the tooth bottom rim of flexspline based on linear relationship.

Key words: mechanical design, harmonic drive, rack approximation method, engagement theory, spatial tooth profile

中图分类号: 

  • TH132.43
[1] Musser C W. Strain wave gearing[P]. United State Patent: 2906143,1959-09-29.
[2] 沈允文,叶庆泰. 谐波齿轮传动的理论和设计[M]. 北京:机械工业出版社,1985.
[3] 辛洪兵. 研究谐波齿轮传动啮合原理的一种新方法[J]. 中国机械工程,2002,13(3):181-183.
Xin Hong-bing. A new method for research on engagement principle of harmonic drive[J]. China Mechanical Engineering, 2002,13(3):181-183.
[4] 范元勋,王华坤,宋德锋. 谐波齿轮传动共轭齿廓的计算机数值模拟研究[J]. 南京理工大学学报:自然科学版, 2002,26(4):389-392.
Fan Yuan-xun, Wang Hua-kun, Song De-feng. Research on computer simulation for conjugate tooth profiles of the harmonic drive[J]. Journal of Nanjing University of Science and Technology(Nature Science),2002,26(4):389-392.
[5] 沈允文.论谐波齿轮传动的齿形[J].齿轮,1986,10 (4):51-56.
Shen yun-wen. Research on tooth profile of harmonic gear drive[J]. Journal of Gear,1986, 10(4):51-56.
[6] 辛洪兵.双圆弧谐波齿轮传动基本齿廓设计[J]. 中国机械工程,2011,22(6):656-662.
Xin hong-bing. Design for basic rack of harmonic drive with double-circular-arc tooth profile[J]. China Mechanical Engineering. 2011,22 (6):656-662.
[7] 王家序,周祥祥,李俊阳,等. 不同共轭原理的双圆弧齿廓谐波齿轮传动分析[J]. 四川大学学报:工程科学版,2015,47(5):160-166.
Wang Jia-xu, Zhou Xiang-xiang, Li Jun-yang, et al. The double-cir-cular-arc tooth profile of harmonic drive analysis based on different conjugate principle[J]. Journal of Sichuan University(Engineering Science Edition), 2015,47(5):160-166.
[8] 吴伟国,于鹏飞,侯月阳,等. 短筒柔轮谐波齿轮传动新设计新工艺与实验[J]. 哈尔滨工业大学学报,2014,46(1):40-46.
Wu Wei-guo,Yu Peng-fei,Hou Yue-yang, et al. New design,new process of harmonic drive with short flexspline and its experiment[J]. Journal of Harbin Institute of Technology,2014,46(1):40-46.
[9] Chen X X, Liu Y S, Xing J Z, et al. The parametric design of double-circular-arc tooth profile and its influence on the functional backlash of harmonic drive[J]. Mechanism and Machine Theory, 2014,73:1-24.
[10] 陈晓霞,林树忠,邢静忠,等. 圆弧齿廓谐波齿轮侧隙及干涉检查仿真[J]. 计算机集成制造系统,2011, 17(3):643-648.
Chen Xiao-xia, Lin shu-zhong, Xing Jing-zhong, et al. Simulation on gear backlash and interference check of harmonic drive with circular-arc teeth profile[J]. Computer Integrated Manufacturing Systems,2011,17 (3):643-648.
[11] Ishikawa Shoichi, Kanagawa Yokohama. Tooth profile of spline of strain wave[P]. United State Patent: 4823638,1989-04-25.
[12] Ishikawa Shoichi, Kanagawa Yokohama, Kiyosawa Yoshihide, et al. Flexible meshing gearing having three-dimensional, non-interactive wide-area intermeshing tooth profile[P]. United State Patent: 5458023, 1995-10-17.
[13] Ishikawa Shoichi, Kanagawa Yokohama, Takizawa Noboru, et al. Wave gear drive with continuous meshing, high ratcheting torque tooth profile[P]. United State Patent: 7694607 B2, 2010-04-13.
[14] Ishikawa Shoichi, Kanagawa Yokohama. Strain wave gearing having a non-interfering wide mesh range tooth profile[P]. United State Patent: 5918508, 1999-07-06.
[15] Ishikawa Shoichi, Kanagawa Yokohama. Flexible meshing type gearing having three-dimensional, non-interactive wide-area intermeshing tooth profile[P]. United State Patent: 6167783 B1, 2001-01-02.
[16] Ishikawa Shoichi, Kanagawa Yokohama. Wave gear device having three-dimensionally contactable shifted tooth profile[P]. United State Patent: 8776638 B2, 2014-07-15.
[17] 王家序,周祥祥,李俊阳,等. 杯形柔轮谐波传动三维双圆弧齿廓设计[J]. 浙江大学学报:工学版,2016,50(4):616-624.
Wang Jia-xu, Zhou Xiang-xiang, Li Jun-yang, et al. Three dimensional profile design of cup harmonic drive with double-circular-arc common-tangent tooth profile[J]. Journal of Zhejiang University (Engineering Science),2016, 50(4):616-624.
[18] 刘邓辉,邢静忠,陈晓霞. 渐开线谐波齿轮空间齿廓设计及仿真分析[J]. 计算机集成制造系统,2015(3):709-715.
Liu Deng-hui, Xing Jing-zhong, Chen Xiao-xia. Spatial tooth profile design and simulation analysis of harmonic drive with involute tooth profile[J]. Computer Integrated Manufacturing Systems, 2015(3):709-715.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[4] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[5] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[6] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[7] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[8] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[9] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[10] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[11] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[12] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[13] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[14] 陈忠敏, 侯力, 段阳, 张祺, 杨忠学, 蒋易强. 新型摆线针轮行星减速器传动系统的振动特性[J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
[15] 刘念, 徐涛, 徐天爽, 胡贤磊, 刘维海. 基于差厚技术的汽车仪表板管梁轻量化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 199-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!