吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1939-1948.doi: 10.13229/j.cnki.jdxbgxb201706036

• 论文 • 上一篇    下一篇

基于信号蝴蝶效应提取的无线传感网络失效区域检测

唐锟, 施荣华   

  1. 中南大学 信息科学与工程学院,长沙 410083
  • 收稿日期:2016-04-14 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 施荣华(1963-),男,教授,博士生导师.研究方向:量子通信,计算机网络与安全,无线传感网络.E-mail:shirh@csu.edu.cn
  • 作者简介:唐锟(1985-),男,博士研究生.研究方向:无线认知通信与安全,无线传感网络.E-mail:tk-0206@163.com
  • 基金资助:
    湖南省教育厅科研项目(12A054); 国家自然科学基金项目(61201086)

Detection of wireless sensor network failure area based on butterfly effect signal

TANG Kun, SHI Rong-hua   

  1. School of Information Science and Engineering, Central South University, Changsha 410083, China
  • Received:2016-04-14 Online:2017-11-20 Published:2017-11-20

摘要: 针对无线传感网络(WSN)区域失效检测存在的范围精度低、误差大的问题,提出了一种WSN失效检测新模型。分析了WSN失效早期的信号特征,证明网络在失效前、后存在节点蝴蝶效应变化。引入虚拟区域的多维对偶模型,利用失效发生时,WSN节点蝴蝶效应变化在空间中表现出的对偶特征,对WSN中可能存在的失效风险进行检测,保证网络在不降低服务可用性的条件下完成失效区域检测。试验结果表明:该方法能够定量分析WSN失效对其安全性能的影响,且无需增加网络负担。

关键词: 信息处理技术, 无线传感网络, 失效性, 蝴蝶效应性, 模拟区域, 对偶特性

Abstract: In order to solve the problem of the low precision and large error in the area failure detection of Wireless Sensor Network (WSN), a new model for WSN failure detection is proposed. The signal characteristics of early failure in WSN are analyzed, and the butterfly effect of nodes is proved before and after the failure. By introducing the virtual multidimensional dual model area, and applying the dual characteristics in the space change of the butterfly effect of WSN node when the failure occurring, the risk of the failure existing in the WSN is detected, to ensure that the detection of network failure area does not reduce the service availability conditions. Experimental results show that the proposed method can quantitatively analyze the impact of WSN failure on its security performance without increasing the network burden.

Key words: information processing technology, wireless sensor networks(WSN), failure, butterfly effect, simulation area, dual characteristics

中图分类号: 

  • TH691.9
[1] 张超,张凤鸣,吴虎胜,等. 航电系统失效检测优化方法研究与仿真[J]. 计算机仿真,2014,31(3):100-104.
Zhang Chao, Zhang Feng-ming,Wu Hu-sheng,et al. Research and simulation of optimization method for avionics system failure detection[J]. Computer Simulation,2014,31(3):100-104.
[2] 滕志军,张帆,宋明辉. 无线传感器网络能量均衡蚁群路由算法[J]. 吉林大学学报:工学版,2016,46(1):327-332.
Teng Zhi-jun, Zhang Fan,Song Ming-hui. Wireless sensor network energy balance ant colony routing algorithm[J]. Journal of Jilin University(Engineering and Technology Edition),2016,46(1):327-332.
[3] Azharuddin M, Jana P K. A distributed algorithm for energy efficient and fault tolerant routing in wireless sensor networks[J]. Wireless Networks,2015,21(1):251-267.
[4] Akhtar F, Rehmani M H. Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review[J]. Renewable & Sustainable Energy Reviews,2015,45(1):769-784.
[5] 李建坡,时明,钟鑫鑫. 自适应蒙特卡罗无线传感器网络移动节点定位算法[J]. 吉林大学学报:工学版,2014,44(4):1191-1196.
Li Jian-po,Shi Ming,Zhong Xin-xin. Self-adaptive Monte Carlo localization algorithm of mobile nodes in WSN[J]. Journal of Jilin University(Engineering and Technology Edition),2014,44(4):1191-1196.
[6] 张婧,刘衍珩,张晋东,等. 无线传感器网络簇半径自适应调整策略[J]. 吉林大学学报:工学版,2016,46(3):876-883.
Zhang Jing,Liu Yan-heng,Zhang Jin-dong. Cluster size adaptive adjustable strategy for wireless sensor networks[J]. Journal of Jilin University(Engineering and Technology Edition),2016,46(3):876-883.
[7] Zhao M, Yang Y, Wang C. Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks[J]. IEEE Transactions on Mobile Computing,2015,14(4):770-785.
[8] Li M, Lin H J. Design and implementation of smart home control systems based on wireless sensor networks and power line communications[J]. IEEE Transactions on Industrial Electronics,2015,62(7):4430-4442.
[9] 张颖颖,张帅,张萍,等. 融合对比度和分布性的图像显著性区域检测[J]. 光学精密工程,2014,22(4):1012-1019.
Zhang Ying-ying,Zhang Shuai,Zhang Ping. Detection of salient maps by fusion of contrast and distribution[J]. Optics and Precision Engineering,2014,22(4):1012-1019.
[10] 王志繁,叶庆卫,周宇,等. 基于排队论的低功耗无线传感技术及其应用[J]. 计算机工程, 2016, 42(8):39-45.
Wang Zhi-fan,Ye Qing-wei,Zhou Yu, et al. Low-power wireless sensing technology and its application based on queuing theory[J].Computer Engineering,2016,42(8):39-45.
[11] 徐涛,贾松敏,张国梁. 元胞自动机多尺度优化的显著性细微区域检测[J]. 光学精密工程,2017,25(5):1312-1321.
Xu Tao,Jia Song-min,Zhang Guo-liang. Salient subtle region accurate detection via cellular automata multi-scale optimization[J]. Optics and Precision Engineering,2017,25(5):1312-1321.
[12] 王明伟,陈立万,李洪兵,等. 基于混合免疫系统机理的无线传感网络故障检测算法[J]. 仪表技术与传感器,2016(4):84-86.
Wang Ming-wei,Chen Li-wan,Li Hong-bing,et al. Fault detection algorithm for wireless sensor networks based on hybrid immune system mechanism[J]. Instrument Technique and Sensor,2016(4):84-86.
[13] 赵锡恒,何小敏,许亮,等. 基于免疫危险理论的无线传感器网络节点故障诊断[J]. 传感技术学报,2014,27(5):658-663.
Zhao Xi-heng,He Xiao-min,Xu Liang,et al. Wireless sensor networks node fault diagnosis based on immune danger theory[J]. Chinese Journal of Sensors and Actuators, 2014,27(5):658-663.
[14] 李文锋,符修文. 无线传感器网络抗毁性[J]. 计算机学报,2015,38(3):625-647.
Li Wen-feng,Fu Xiu-wen. Survey on invulnerability of wireless sensor networks[J]. Chinese Journal of Computers,2015,38(3):625-647.
[15] 柯洪昌,孙宏彬. 图像序列的显著性目标区域检测方法[J]. 中国光学,2015,8(5):768-774.
Ke Hong-chang, Sun Hong-bin. A saliency target area detection method of image sequence[J]. Chinese Journal of Optics,2015,8(5):768-774.
[16] He D, Kumar N, Chen J, et al. Robust anonymous authentication protocol for health-care applications using wireless medical sensor networks[J]. Multimedia Systems,2015,21(1):49-60.
[17] Kuo T W, Lin C J, Tsai M J. On the construction of data aggregation tree with minimum energy cost in wireless sensor networks: NP-completeness and approximation algorithms[J]. IEEE Transactions on Computers,2016,65(10):3109-3121.
[18] Younis M, Akkaya K, Youssef M. Handling QoS traffic in wireless sensor networks[J]. IEEE Journal on Selected Areas in Communications,2015,28(7):1105-1115.
[19] Zhang J, Ren F, Gao S, et al. Dynamic routing for data integrity and delay differentiated services in wireless sensor networks[J]. IEEE Transactions on Mobile Computing,2015,14(2):328-343.
[20] Radouanelqdour, Younes, Jabrane. Wavelet networks for reducing the envelope fluctuations in Wireless Man-OFDM systems[J]. Digital Communications & Networks, 2016, 2(2):77-83.
[21] Doavi A, Parvan H, Salama A A, et al. Security in wireless sensor networks[J]. Communications of the ACM,2015,47(6):53-57.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!