吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 1199-1205.doi: 10.13229/j.cnki.jdxbgxb20170600
王旭1,2, 欧阳继红1,2, 陈桂芬3
WANG Xu1,2, OUYANG Ji-hong1,2, CHEN Gui-fen3
摘要: 针对图相似度度量过程中复杂度高、信息缺失的问题,采用将图转换为广义树,将广义树表示为垂直维序列的方法,通过计算垂直维序列的距离度量图的相似度。该方法把度量图相似度的问题简化为计算垂直维序列距离的问题。垂直维序列不仅包含了顶点标号、入度和出度信息,而且体现了顶点的层次结构特性,保留了图中的路径信息。与现有方法相比,该方法在度量过程中考虑了更多的图信息,并将时间复杂度降至O(n2)。
中图分类号:
[1] Ahmed A, Shervashidze N, Narayanamurthy S, et al.Distributed large-scale natural graph factorization[C]∥22nd International Conference on World Wide Web, Rio de Janeiro, Brazil,2013:37-48. [2] Shanavas N, Wang H, Lin Z, et al.Supervised graph-based term weighting scheme for effective text classification[C]∥Proceedings of the 22nd European Conference on Artificial Intelligence, Hague, Netherlands, 2016: 1710-1711. [3] Macropol K,Singh A.Reachability analysis and modeling of dynamic event networks[C]∥European Conference of Machine Learning and Knowledge Discovery in Databases, Bristol, UK, 2012: 442-457. [4] Sugiyama M, Llinares F, Kasenburg N, et al.Significant subgraph mining with multiple testing correction[C]∥Proceedings of the SIAM International Conference on Data Mining, Vancouver, Canada, 2015: 37-45. [5] Vishwanathan S, Schraudolph N, Kondor R, et al.Graph kernels[J]. Journal of Machine Learning Research, 2010, 11:1201-1242. [6] Sugiyama M, Borgwardt K.Halting in random walk kernels[C]∥28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 1639-1647. [7] Borgwardt K, Kriegel H.Shortest-path kernels on graphs[C]∥Proceedings of IEEE International Conference on Data Mining, Houston, USA, 2005: 74-81. [8] Elzinga C, Wang H.Kernels for acyclic digraphs[J]. Pattern Recognition Letters, 2012, 33(16): 2239-2244. [9] Forster D, Bittner L, Karkar S, et al. Testing ecological theories with sequence similarity networks: marine ciliates exhibit similar geographic dispersal patterns as multicellular organisms[J].BMC Biology, 2015, 13: doi: 10.1186/s12915-015-0125-5. [10] Yanardag P, Vishwanathan S.A structural smoothing framework for robust graph comparison[C]∥Proceedings of Neural Information Processing Systems, Montreal, Canada, 2015: 2134-2142. [11] Shervashidze N, Schweitzer P, Leeuwen E, et al.Weisfeiler-Lehman graph kernels[J].Journal of Machine Learning Research, 2011, 12: 2539-2561. [12] Yanardag P, Vishwanathan S.Deep graph kernels[C]∥Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 2015: 1365-1374. [13] Sakoe H, Chiba S.Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43-49. [14] Kurbalija V, Radovanovic M, Geler Z, et al.The influence of global constraints on similarity measures for time-series databases[J].Knowledge-Based Systems, 2014, 56: 49-67. [15] Wang Q, Korkin D, Shang Y.A fast multiple longest common subsequence(MLCS) algorithm[J].IEEE Transactions on Knowledge and Data Engineering, 2011, 23(3): 321-334. [16] Wang H.All common subsequences[C]∥Proceeding 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 2007: 635-640. [17] Lin Z, Wang H, McClean S. A multidimensional sequence approach to measuring tree similarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(2): 197-208. [18] Li Tao, Dong Han, Shi Yong-tang, et al.A comparative analysis of new graph distance measures and graph edit distance[J]. Information Sciences, 2017, 403: 15-21. [19] Zhu Gang-gao, Iglesias C.Computing semantic similarity of concepts in knowledge graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1): 72-85. |
[1] | 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577. |
[2] | 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585. |
[3] | 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213. |
[4] | 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865. |
[5] | 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873. |
[6] | 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
[7] | 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532. |
[8] | 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538. |
[9] | 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544. |
[10] | 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603. |
[11] | 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611. |
[12] | 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230. |
[13] | 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243. |
[14] | 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252. |
[15] | 周炳海, 彭涛. 混流装配线准时化物料配送调度优化[J]. 吉林大学学报(工学版), 2017, 47(4): 1253-1261. |
|