吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1895-1903.doi: 10.13229/j.cnki.jdxbgxb20170815
摘要:
为了避免传统水下图像增强方法需要人工选取特征,特征提取困难、清晰度低的问题,本文提出一种基于卷积神经网络的水下图像增强方法。首先根据清晰图像,通过水下图像退化模型模拟水下图像形成过程并建立水下图像库。然后,提出一种用于增强水下图像的卷积神经网络模型,该模型可以直接在清晰图像和水下图像之间建立映射关系。最后,通过卷积神经网络提取的图像特征,对水下图像进行恢复。试验结果表明:本文方法较传统方法噪声更少,并且提高了清晰度,为水下图像增强方法的研究提供了新的思路。
中图分类号:
[1] | Fattal R . Single image dehazing[J]. ACM Transactions on Graphics, 2008,27(3):11-15. |
[2] | 张凯, 裘溯, 王霞 , 等. 水下彩色图像的亮度通道多尺度Retinex增强算法[J]. 红外技术, 2011,33(11):630-634. |
Zhang Kai, Qiu Su, Wang Xia , et al. Multi-scale retinex enhancement algorithm on luminance channel of color underwater image[J]. Infrared Technology, 2011,33(11):630-634. | |
[3] |
Land E H, McCann J . Lightness and Retinex theory[J]. Journal of the Optical Society of America, 1971,61(1):1-11.
doi: 10.1364/JOSA.61.000001 |
[4] |
He K M, Sun J, Tang X O . Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(12):2341-2353.
doi: 10.1109/TPAMI.2010.168 pmid: 20820075 |
[5] |
Chiang J Y, Chen Y C . Underwater image ehancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012,21(4):1756-1769.
doi: 10.1109/TIP.2011.2179666 pmid: 22180510 |
[6] | Ancuti C O, Bekaert P, Haber T, et al. Enhancing underwater images and videos by fusion [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, RI, USA, 2012: 81-88. |
[7] |
刘智, 黄江涛, 冯欣 . 构建多尺度深度卷积神经网络行为识别模型[J]. 光学精密工程, 2017,25(3):799-805.
doi: 10.3788/OPE.20172503.0799 |
Liu Zhi, Huang Jiang-tao, Feng Xin . Action recognition model construction based on multi-scale deep convolution neural network[J]. Optics and Precision Engineering, 2017,25(3):799-805.
doi: 10.3788/OPE.20172503.0799 |
|
[8] |
熊昌镇, 单艳梅, 郭芬红 . 结合主体检测的图像检索方法[J]. 光学精密工程, 2017,25(3):792-798.
doi: 10.3788/OPE.20172503.0792 |
Xiong Chang-zhen, Shan Yan-mei, Guo Fen-hong . Image retrieval method based on image principal part detection[J]. Optics and Precision Engineering, 2017,25(3):792-798.
doi: 10.3788/OPE.20172503.0792 |
|
[9] |
李琳辉, 伦智梅, 连静 , 等. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报:工学版, 2017,47(2):384-391.
doi: 10.13229/j.cnki.jdxbgxb201702006 |
Li Lin-hui, Lun Zhi-mei, Lian Jing , et al. Convolution neural network-based vehicle detection method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(2):384-391.
doi: 10.13229/j.cnki.jdxbgxb201702006 |
|
[10] | Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 580-587. |
[11] | Liu S, Liang X, Liu L, et al. Matching-CNN meets KNN: quasi-parametric human parsing [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 1419-1427. |
[12] |
Cai B, Xu X, Jia K , et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016,25(11):5187-5198.
doi: 10.1109/TIP.2016.2598681 |
[13] |
Jaffe J S . Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 2002,15(2):101-111.
doi: 10.1109/48.50695 |
[14] |
杨爱萍, 郑佳, 王建 , 等. 基于颜色失真去除与暗通道先验的水下图像复原[J]. 电子与信息学报, 2015,37(11):2541-2547.
doi: 10.11999/JEIT150483 |
Yang Ai-ping, Zheng Jia, Wang Jian , et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics and Information Technology, 2015,37(11):2541-2547.
doi: 10.11999/JEIT150483 |
|
[15] |
马淼, 李贻斌 . 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报:工学版, 2017,47(4):1244-1252.
doi: 10.13229/j.cnki.jdxbgxb201704033 |
Ma Miao, Li Yi-bin . Multi-level image sequences and convolutional neural networks based human action recognition method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(4):1244-1252.
doi: 10.13229/j.cnki.jdxbgxb201704033 |
|
[16] | 刘万军, 梁雪剑, 曲海成 . 不同池化模型的卷积神经网络学习性能研究[J]. 中国图象图形学报, 2016,21(9):1178-1190. |
Liu Wan-jun, Liang Xue-jian, Qu Hai-cheng . Learning performance of convolutional neural networks with different pooling models[J]. Journal of Image and Graphics, 2016,21(9):1178-1190. | |
[17] |
Duntley S Q . Light in the sea[J]. Journal of the Optical Society of America, 1963,53(2):214-233.
doi: 10.1364/JOSA.53.000214 |
[18] | 默顿斯 L E, 张闻迪 . 水中摄影学[M]. 北京: 科学出版社, 1979. |
[19] |
Lecun Y, Bottou L, Bengio Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
doi: 10.1109/5.726791 |
[20] |
Scharstein D, Szeliski R, Zabih R . A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002,47(1-3):7-42.
doi: 10.1023/A:1014573219977 |
[21] | Scharstein D, Szeliski R. High-accuracy stereo depth maps using structured light [C]//2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Madison, WI, USA, 2003: 195-202. |
[22] | Scharstein D, Pal C . Learning conditional random Fields for stereo[J/OL]. [2017-07-30].. |
[23] | Hirschmuller H, Scharstein D . Evaluation of cost functions for stereo matching[J/OL].[2017-08-01].. |
[24] |
Dong C, Loy C C, He K M , et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016,38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281 pmid: 26761735 |
[25] | Kwon H H, Tai Y W, Lin S. Data-driven depth map refinement via multi-scale sparse representation [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 159-167. |
[26] | Fu X Y, Zhuang P X, Huang Y, et al. A retinex-based enhancing approach for single underwater image [C]//2014 IEEE International Conference on Image Processing, Paris, France, 2014: 4572-4576. |
[1] | 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985. |
[2] | 付银娟,李勇,徐丽琴,张昆辉. NLFM⁃Costas射频隐身雷达信号设计及分析[J]. 吉林大学学报(工学版), 2019, 49(3): 994-999. |
[3] | 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894. |
[4] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[5] | 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916. |
[6] | 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924. |
[7] | 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930. |
[8] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[9] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
[10] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[11] | 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[12] | 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[13] | 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[14] | 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506. |
[15] | 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
|