吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (3): 727-735.doi: 10.13229/j.cnki.jdxbgxb20171257

• • 上一篇    下一篇

基于RGB熵和改进区域生长的非结构化道路识别方法

吴骅跃(),段里仁   

  1. 长安大学 信息工程学院,西安 710064
  • 收稿日期:2017-12-22 出版日期:2019-05-01 发布日期:2019-07-12
  • 作者简介:吴骅跃(1989?),男,博士研究生. 研究方向:智能交通及自动驾驶.E?mail:whyinvr@126.com
  • 基金资助:
    陕西省协同创新计划项目(2014XT?12)

Unstructured road detection method based on RGB entropy and improved region growing

Hua⁃yue WU(),Li⁃ren DUAN   

  1. School of Information Engineering, Chang′an University, Xi′an 710064, China
  • Received:2017-12-22 Online:2019-05-01 Published:2019-07-12

摘要:

非结构化道路通常没有车道线等引导标线,且边界模糊,周围干扰因素较多,在这种道路上自动驾驶以及车辆辅助驾驶的车道保持功能将不能可靠工作。通过生成道路RGB图像的熵图像,并计算此熵图像直方图的最小差值,以此差值作为阈值初步分割道路图像并使用改进区域生长方法提取出道路区域。使用实时性较好的二次曲线建立车道模型,并使用改进的最小二乘拟合方法可有效避开道路区域边缘杂点并提高边缘拟合速度。试验结果表明,改进的方法可以快速并较好地提取出非结构化道路图像中的车道并拟合出车道线,有利于实现基于视觉的自动驾驶和车辆辅助驾驶系统在非结构化道路上的车道保持。

关键词: 交通信息工程及控制, 非结构化道路检测, RGB图像熵, 区域生长方法, 二次曲线模型

Abstract:

Unstructured roads usually do not have leading lines such as lanes, and the road boundary is vague and there exist many interference factors around the roads. Therefore it is not reliable to use the lane keeping system for autopilot and driver assistance system in this kind of roads. By generating the entropy image from original image the minimum difference of histogram of the entropy image is computed, and the difference is used as the segmental threshold to preliminarily segment the image. Then, the improved region growing method is used to extract the lane from the preliminarily segmented image. The real?time quadratic curve is used to establish the lane model, and the improved least square fitting method is applied to effectively avoid noisy points on the edges of lane region and promote the fitting speed. The experimental results show that the improved methods can be used to rapidly extract the lane from road image and fit out the lane line, therefore it helps to achieve visual based lane keeping on unstructured road for autopilot and driver assistance system.

Key words: traffic information engineering and control, unstructured road detection, RGB image entropy, region growing method, quadratic curve model

中图分类号: 

  • U495

图1

原始图像及其熵图像"

图2

熵图像及其熵分割图像"

图3

区域生长过程及区域编号"

图4

改进区域生长方法结果"

图5

改进区域生长方法车道提取效果"

图6

本文道路拟合过程(左边界)"

图7

不同非结构化道路的车道识别"

图8

地下停车场车道识别"

表1

熵分割图像生成时间统计"

帧率/(帧·s?1)总帧数总生成时间/ms每帧平均时间/ms
206000144 21524
12000287 54723
36000904 67125
257500157 61421
15000344 75222
450001080 41824
309000198 40622
18000414 05723
540001243 25923
3510500252 46724
21000483 19723
630001574 94525

表2

车道识别时间统计"

帧率/(帧·s?1)总帧数总识别时间/ms每帧平均时间/ms
206 000150 34725
12 000299 67925
36 000934 24925
257 500165 20722
15 000359 81424
45 0001125 57425
309 000207 58123
18 000426 90323
54 0001297 43324
3510 500253 10824
21 000504 26824
63 0001633 86925

表3

不同车速时的道路识别结果"

车速/(km·h?1)帧率/(帧·s?1)总帧数完成帧数

完成率

/%

识别间隔距离/(m·帧?1)
201518 00018 0001000.37
2024 00024 0001000.27
2530 00030 0001000.22
402024 00024 0001000.55
2530 00030 0001000.44
3036 00036 0001000.37
602530 00030 0001000.66
3036 00036 0001000.55
3542 00041 271980.47
803036 00036 0001000.74
3542 00040 834970.63
4048 00045 273940.55
1 熊思, 李磊民, 黄玉清. 基于小波变换和K⁃means的非结构化道路检测[J]. 计算机工程, 2014, 40(2): 158⁃161.
XiongSi, LiLei⁃min, HuangYu⁃qing. Unstructured road detection based on wavelet transform and K⁃means[J]. Computer Engineering, 2014, 40(2): 158⁃161.
2 郭秋梅, 黄玉清. 基于二维熵和轮廓特征的非结构化道路检测[J]. 计算机应用, 2013, 33(7): 2005⁃2008.
GuoQiu⁃mei, HuangYu⁃qing. Unstructured road detection based on two⁃dimensional entropy and contour features[J]. Journal of Computer Applications, 2013, 33(7): 2005⁃2008.
3 WangY, TeohE K, ShenD G. Lane detection and tracking using B⁃Snake[J]. Image and Vision Computing, 2004, 22(4): 269⁃280.
4 JeongH, OhY, ParkJ H, et al. Vision⁃based adaptive and recursive tracking of unpaved roads[J]. Pattern Recognition Letters, 2002, 23(1⁃3): 73⁃82.
5 周植宇, 杨明, 薛林继, 等. 一种基于高斯核支持向量机的非结构化道路环境植被检测方法[J]. 机器人, 2015, 37(6): 702⁃707.
ZhouZhi⁃yu, YangMing, XueLin⁃ji, et al. Vegetation detection approach based on gaussian kernel support vector machine in unstructured road environment[J]. Robot, 2015, 37(6): 702⁃707.
6 柏猛, 李敏花. 基于图模型的道路检测方法[J]. 模式识别与人工智能, 2014, 27(7): 655⁃662.
BaiMeng, LiMin⁃hua. Road detection method based on graph model[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(7): 655⁃662.
7 龚建伟, 叶春兰, 姜岩, 等. 多层感知器自监督在线学习非结构化道路识别[J]. 北京理工大学学报, 2014, 34(3): 261⁃266.
GongJian⁃wei, YeChun⁃lan, JiangYan, et al. Unstructured road recognition using self⁃supervised multilayer perceptron online learning algorithm[J]. Transactions of Beijing Institute of Technology, 2014, 34(3): 261⁃266.
8 ZhouS Y, GongJ W, XiongG M, et al. Road detection using support vector machine based on online learning and evaluation[C]∥IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 2010: 256⁃261.
9 兰丽, 胡晓辉, 孙苗强. 一种基于灰关联和Sobel算子的完全非结构化道路边缘检测方法[J]. 湖南工程学院学报, 2013, 23(1): 42⁃44.
LanLi, HuXiao⁃hui, SunMiao⁃qiang. Completely unstructured road edge detection based on grey relation and sobel operator[J]. Journal of Hunan Institute of Engineering, 2013, 23(1): 42⁃44.
10 吕艳鹏, 潘玉田. 基于MATLAB图像处理的非结构化道路识别[J]. 机械工程与自动化, 2014, 43(2): 32⁃33.
LvYan⁃peng, PanYu⁃tian. Unstructured road detection based on MATLAB image processing[J]. Mechanical Engineering & Automation, 2014, 43(2): 32⁃33.
11 李进, 陈杰平, 易克传, 等. 基于特征融合的视觉导航智能车辆的车道识别[J]. 汽车工程, 2015, 37(5): 587⁃592.
LiJin, ChenJie⁃ping, YiKe⁃chuan, et al. Lane identification of vision⁃guided intelligent vehicle based on feature fusion[J]. Automotive Engineering, 2015, 37(5): 587⁃592.
12 许华荣, 王晓栋, 方遒. 基于B样条曲线模型的结构化道路检测算法[J]. 自动化学报, 2011, 37(3): 270⁃275.
XuHua⁃rong, WangXiao⁃dong, FangQiu. Structure road detection algorithm based on B⁃spline curve model[J]. Acta Automatica Sinica, 2011, 37(3): 270⁃275.
13 ChiuK Y, LinS F. Lane detection using color⁃based segmentation[C]∥IEEE Intelligent Vehicles Symposium, Las Vegas, USA, 2005: 706⁃711.
14 颜飞,周长久,田彦涛. 用于目标定位的图像边缘点检测算法[J]. 吉林大学学报:工学版,2016,46(6):2103-2110.
Yanfei,zhouchang-jiu,tianyan-tao. Image edge points detection algorithm for object localization[J]. Journal of Jilin University(Engineering and Technology Edition), 2016,46(6):2103-2110.
15 肖明尧,李雄飞,张小利,等. 基于多尺度的区域生长的图像分割算法[J]. 吉林大学学报:工学版,2017,47(5):1591-1597.
XiaoMing-yao,LiXiong-fei,ZhangXiao-li,et al. Medical image segmentation algorithm based on multi-scale region growing[J]. Journal of Jilin University(Engineering and Technology Edition), 2017,47(5):1591-1597.
16 武历颖, 余强. 一种快速准确非结构化道路检测方法研究[J]. 计算机仿真, 2016, 33(9): 174⁃178.
WuLi⁃ying, YuQiang. A fast and accurate detection method of unstructured road[J]. Computer Simulation, 2016, 33(9): 174⁃178.
[1] 陶涛,徐洪泽. 高速列车浸入与不变自适应容错控制方法[J]. 吉林大学学报(工学版), 2015, 45(2): 554-561.
[2] 陈 强, 李 江, 吴 想, 闫松申. 轮胎印痕识别算法及实例分析[J]. 吉林大学学报(工学版), 2005, 35(01): 39-0043.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李玉庆,徐敏强,王日新. 不确定性条件下的深空探测器观测调度[J]. 吉林大学学报(工学版), 2009, 39(06): 1590 -1594 .
[2] 佟月英, 陈东辉, 石志标, 佟金. 鸡肉的压力特性曲线与其新鲜度的关系[J]. 吉林大学学报(工学版), 2010, 40(02): 491 -0495 .
[3] 赵文竹, 殷涌光, 于志鹏, 于一丁, 刘静波. 玉米须多糖微波提取工艺及其红外光谱结构分析[J]. 吉林大学学报(工学版), 2012, 42(02): 515 -520 .
[4] 袁瑗,陈兵,徐涛,王建东. 基于先验知识的多类CVM航班延误预警模型[J]. 吉林大学学报(工学版), 2010, 40(03): 752 -0757 .
[5] 莫愁, 陈吉清, 兰凤崇. 逆子结构传递路径分析方法[J]. 吉林大学学报(工学版), 2015, 45(6): 1751 -1756 .
[6] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466 -1474 .
[7] 张英芝, 刘津彤, 申桂香, 戚晓艳, 龙哲. 基于故障相关性分析的数控机床系统可靠性建模[J]. 吉林大学学报(工学版), 2017, 47(1): 169 -173 .
[8] 林正松, 代棋帆, 张璐, 刘璇, 唐超, 冰河. 城市开放社区模式的可视化仿真分析[J]. 吉林大学学报(工学版), 2018, 48(1): 336 -343 .
[9] 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929 -935 .
[10] 闫洪余,吴文福,尹慧敏,韩峰. 立辊型玉米收获机运动参数对损失率的影响[J]. 吉林大学学报(工学版), 2010, 40(01): 113 -0118 .