吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (6): 1826-1835.doi: 10.13229/j.cnki.jdxbgxb20181075

• • 上一篇    下一篇

钢铝异质自冲铆接头剥离失效仿真

庄蔚敏(),刘洋,王鹏跃,施宏达,徐纪栓   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2018-10-12 出版日期:2019-11-01 发布日期:2019-11-08
  • 作者简介:庄蔚敏(1970-),女,教授,博士生导师. 研究方向:车身结构轻量化设计.E-mail:zhuangwm@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51775227);国家重点研发计划项目(2016YFB0101601);吉林省省校共建计划专项项目(SXGJSF2017-2-1-5)

Simulation on peeling failure of self⁃piercing riveted joints insteel and aluminum alloy dissimilar sheets

Wei-min ZHUANG(),Yang LIU,Peng-yue WANG,Hong-da SHI,Ji-shuan XU   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China
  • Received:2018-10-12 Online:2019-11-01 Published:2019-11-08

摘要:

为了研究钢铝自冲铆接头剥离失效行为,对5754铝合金和Q235钢异质自冲铆接头进行了剥离试验及仿真研究。建立了基于MMC失效准则的T型自冲铆接头有限元模型,对两种接头在剥离工况下的拉伸失效过程进行仿真,对比试验结果验证了有限元模型的可靠性,并对接头的剥离失效行为进行了分析。研究结果表明:建立的有限元模型能表征接头在剥离工况下的失效形式及力学性能;铝-钢接头因上板与铆钉分离失效,剥离过程中加载侧钉脚和钉头区域易产生应力集中,上板加载侧铆孔区域最先发生失效;钢-铝接头失效形式为铆钉与下板分离,剥离过程中加载侧钉头边缘及钉脚内壁区域易出现应力集中,下板铆扣区域发生脱层损伤,脱层损伤区域向非加载侧铆扣区域扩展。

关键词: 车辆工程, 自冲铆, MMC失效模型, 剥离仿真, 失效行为

Abstract:

In order to study the peeling failure behavior of steel-aluminum self-piercing riveted (SPR) joints, peeling tests and simulation studies were carried out on two kinds of dissimilar SPR joints in 5754 aluminum alloy and Q235 steel sheets. The finite element model of T-type SPR joint was established based on the modified Mohr-Coulomb (MMC) failure criterion. The tensile failure process of the two joints under peeling condition was simulated. The reliability of the finite element model was verified by comparing test and simulation results, and the peeling failure behavior of the joint was analyzed. The results show that the joint has better mechanical properties when the steel sheet is used as the lower sheet, and the finite element model can better predict the failure mode and mechanical properties of the joint under peeling condition. The failure mode of the aluminum-steel joint is the separation of the rivet from the upper sheet, the stress concentration is located at the rivet tail and rivet head area of the loaded side during the peeling process, and the riveted area of the upper sheet at unloaded side first failed. The failure mode of the steel-aluminum joint is the separation of the rivet from the lower sheet, the stress concentration is located at the edge of rivet head and inside of rivet tail of the loaded side during the peeling process. Delamination damage occurred in the rivet area of the bottom sheet, and the delamination damage region extended to the rivet area of the unloaded side.

Key words: vehicle engineering, self-piercing riveting, MMC failure model, peeling simulation, failure behavior

中图分类号: 

  • U270.4

表1

基板的力学性能"

材料 密度/(kg·m-3)

弹性模

量/GPa

泊松比 屈服强度/MPa 抗拉强度/MPa
Q235钢 7 800 200 0.3 251.9 426.6
5754铝合金 2 700 70 0.3 162.1 244.1

图1

铆钉和模具尺寸(mm)"

图2

接头形状及尺寸"

图3

接头截面"

表2

各组接头的静失效载荷和最大位移"

接头 静失效载荷 最大位移
均值/N 标准差 均值/mm 标准差
铝-钢 954 43.77 18.3 0.91
钢-铝 1142 57.67 22.9 1.26

图4

接头的载荷-位移曲线"

图5

接头剥离失效试件"

表3

两种材料硬化公式参数"

参 数 5754铝合金 Q235钢
A/MPa 242.9 605.3
n 0.19 0.271
C 86.1 206.6

图6

应力三轴度和罗德角参数计算流程图"

表4

材料的应力三轴度、罗德角参数和断裂应变"

材料 试件类型 应力三轴度 罗德角参数

断裂

应变

5754铝合金 单向拉伸 0.394 0.835 0.535
剪切试件 0.046 0.061 0.432
缺口10 mm 0.539 0.305 0.421
缺口6.67 mm 0.561 0.204 0.410
Q235钢 单向拉伸 0.396 0.852 0.771
剪切试件 0.075 0.010 0.752
缺口10 mm 0.517 0.404 0.663
缺口6.67 mm 0.556 0.351 0.646

表5

材料的MMC模型参数"

材 料 c 1 c 2 c 3 LSE
5754铝合金 0.013 2.172 0.935 0.002 2
Q235钢 0.054 1.989 0.933 0.000 1

图7

遗传算法参数优化流程图"

图8

材料的失效曲面"

图9

接头有限元模型"

图10

仿真获得接头的失效形式"

图11

接头的载荷-位移曲线"

图12

铝-钢接头应力云图"

图13

r=0.49时上板的应力及应变云图"

图14

上板失效点应力变化曲线"

图15

载荷-位移曲线关键点的接头应力状态"

图16

钢-铝接头应力云图"

图17

r=0.93时下板的应力及应变云图"

图18

下板失效点应力变化曲线"

图19

载荷-位移曲线关键点的接头应力状态"

1 李永兵, 马运五, 楼铭, 等 . 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1-23.
1 Li Yong-bing , Ma Yun-wu , Lou Ming , et al . Advances in welding and joining processes of multi-material lightweight car body[J]. Journal of Mechanical Engineering, 2016, 52(24): 1-23.
2 He X C , Zhao L , Deng C J , et al . Self-piercing riveting of similar and dissimilar metal sheets of aluminum alloy and copper alloy[J]. Materials and Design, 2015, 65: 923-933.
3 邢保英, 何晓聪, 王玉奇, 等 . 多铆钉自冲铆接头力学性能机理[J]. 吉林大学学报: 工学版, 2015, 45(5): 1488-1494.
3 Xing Bao-ying , He Xiao-cong , Wang Yu-qi , et al . Mechanism of mechanical properties of self-piercing riveted joints with multiple rivets[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(5): 1488-1494.
4 Zhang C Y , Gou R B , Yu M , et al . Mechanical and fatigue properties of self-piercing riveted joints in high-strength steel and aluminium alloy[J]. Journal of Iron and Steel Research International, 2017, 24(2): 214-221.
5 张先炼, 何晓聪, 程强 . 钢铝合金组合板自冲铆接头的力学性能研究[J]. 热加工工艺, 2016, 45(15): 136-139.
5 Zhang Xian-lian , He Xiao-cong , Cheng Qiang , et al . Study on mechanical performance of self-piercing riveted joints of steel and aluminum alloy assemble sheets[J]. Hot Working Technology, 2016, 45(15): 136-139.
6 Huang L , Moraes J F C , Sediako D G , et al . Finite-element and residual stress analysis of self-pierce riveting in dissimilar metal sheets[J]. Journal of Manufacturing Science and Engineering, 2017, 139(2): 1-11.
7 钟毅, 林健, 雷永平, 等 . 自冲铆接接头拉剪强度的数值模拟研究[J]. 材料工程, 2011, 11: 18-22.
7 Zhong Yi , Lin Jian , Lei Yong-ping , et al . Numerical simulation of lap-shear strength of self-piercing riveting joint[J]. Journal of Materials Engineering, 2011, 11: 18-22.
8 Mori K , Abe Y , Kato T . Self-pierce riveting of multiple steel and aluminium alloy sheets[J]. Journal of Materials Processing Technology, 2014, 214(10): 2002-2008.
9 Bouchard P O , Laurent T , Tollier L . Numerical modeling of self-pierce riveting—from riveting process modeling down to structural analysis[J]. Journal of Materials Processing Technology, 2008, 202(1): 290-300.
10 Ma Y W , Lou M , Li Y B , et al . Effect of rivet and die on self-piercing rivetability of AA6061-T6 and mild steel CR4 of different gauges[J]. Journal of Materials Processing Technology, 2018, 251: 282-294.
11 余康, 邢保英, 何晓聪, 等 . 钢/铝异种板自冲铆接头的腐蚀性能研究[J]. 热加工工艺, 2015, 47(15): 1-5.
11 Yu Kang , Xing Bao-ying , He Xiao-cong , et al . Study on corrosion properties of self-piercing riveted joints of steel/aluminum dissimilar sheet [J]. Hot Working Technology, 2015, 47(15): 1-5.
12 Bao Y B , Wierzbicki T . A comparative study on various ductile crack formation criteria[J]. Transactions of the Asme Journal of Engineering Materials and Technology, 2004, 126(3): 314-324.
13 Bai Y L , Wierzbicki T . Application of extended Mohr–Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20.
14 Eller T K , Greve L , Andres M T , et al . Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties[J]. Journal of Materials Processing Technology, 2014, 214(6): 1211-1227.
15 金鑫 . 铝钢异种金属自冲铆接工艺仿真优化研究[D]. 上海: 上海交通大学机械与动力工程学院, 2012.
15 Jin Xin . Research on the simulation and optimization of self-piercing riveting process for dissimilar materials[D]. Shanghai: School of Mechanical Engineering, Shanghai Jiaotong University, 2012.
16 Abe Y , Kato T , Mori K . Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die[J]. Journal of Materials Processing Technology, 2009, 209(8): 3914-3922.
[1] 马芳武,倪利伟,吴量,聂家弘,徐广健. 轮腿式全地形移动机器人位姿闭环控制[J]. 吉林大学学报(工学版), 2019, 49(6): 1745-1755.
[2] 陈鑫,阮新建,李铭,王宁,王佳宁,潘凯旋. 基于大涡模拟的离散格式改进方法及应用[J]. 吉林大学学报(工学版), 2019, 49(6): 1756-1763.
[3] 何仁,涂琨. 基于温度补偿气隙宽度的电磁制动器[J]. 吉林大学学报(工学版), 2019, 49(6): 1777-1785.
[4] 靳立强, 田端洋, 田浩, 刘蒙蒙. 汽车电子稳定系统制动增力辅助技术[J]. 吉林大学学报(工学版), 2019, 49(6): 1764-1776.
[5] 李杰, 郭文翠, 赵旗, 谷盛丰. 基于车辆响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2019, 49(6): 1810-1817.
[6] 管欣,金号,段春光,卢萍萍. 汽车行驶道路侧向坡度估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1802-1809.
[7] 王杨,宋占帅,郭孔辉,庄晔. 转动惯量试验台的惯性参数测量[J]. 吉林大学学报(工学版), 2019, 49(6): 1795-1801.
[8] 刘巧斌,史文库,陈志勇,骆联盟,苏志勇,黄开军. 混合可靠性模型参数的核密度和引力搜索估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1818-1825.
[9] 陈百超,邹猛,党兆龙,黄晗,贾阳,石睿杨,李建桥. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报(工学版), 2019, 49(6): 1836-1843.
[10] 马芳武,韩露,周阳,王世英,蒲永锋. 采用聚乳酸复合材料的汽车零件多材料优化设计[J]. 吉林大学学报(工学版), 2019, 49(5): 1385-1391.
[11] 高振海,孙天骏,何磊. 汽车纵向自动驾驶的因果推理型决策[J]. 吉林大学学报(工学版), 2019, 49(5): 1392-1404.
[12] 张博,张建伟,郭孔辉,丁海涛,褚洪庆. 路感模拟用永磁同步电机电流控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1405-1413.
[13] 王鹏宇,赵世杰,马天飞,熊晓勇,程馨. 基于联合概率数据关联的车用多传感器目标跟踪融合算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1420-1427.
[14] 胡兴军,惠政,郭鹏,张扬辉,张靖龙,王靖宇,刘飞. 基于流固耦合的汽车气动特性[J]. 吉林大学学报(工学版), 2019, 49(5): 1414-1419.
[15] 韩小健,赵伟强,陈立军,郑宏宇,刘阳,宗长富. 基于区域采样随机树的客车局部路径规划算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1428-1440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[2] 张学成, 周长明,于立娟, 韩春学 . 力标准机加载过程砝码倒换控制方法
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 73 -77 .
[3] 黄达,赵熹华,宋敏霞,冯吉才 . TC4/ZQSn10-10扩散连接接头残余应力的数值模拟[J]. 吉林大学学报(工学版), 2007, 37(05): 1078 -1082 .
[4] 方志耕,刘思峰,阮爱清. 基于不能直接判定区间灰数大小的灰矩阵博弈的纯策略解及其风险[J]. 吉林大学学报(工学版), 2006, 36(01): 137 -0142 .
[5] 李杰,庄继德,魏东,万亦强. 沙漠仿生轮胎与普通轮胎牵引性能的对比试验[J]. 吉林大学学报(工学版), 2006, 36(04): 510 -513 .
[6] 肖萍萍,田彦涛,杨晓萍 . 基于分组丢失的高带宽流鉴别算法[J]. 吉林大学学报(工学版), 2006, 36(05): 793 -0798 .
[7] 宋传学, 蔡章林, 安晓鹃 . 车辆平顺性的虚拟仿真及试验[J]. 吉林大学学报(工学版), 2007, 37(02): 259 -0262 .
[8] 赵宏伟;吴博达;刘国嵩;程光明;杨志刚;王涛 . 新型压电步进旋转驱动器[J]. 吉林大学学报(工学版), 2006, 36(06): 898 -902 .
[9] 那景新,闫亚坤,庄蔚敏 .

用厚度阈值法改善深拉延冲压件坯料形状预测精度

[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 20 -23 .
[10] 高书娜, 邓兆祥, 胡玉梅. 基于声压灵敏度分析的轿车车内低频噪声优化[J]. 吉林大学学报(工学版), 2009, 39(05): 1130 -1136 .