吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1739-1746.doi: 10.13229/j.cnki.jdxbgxb20190628

• 交通运输工程·土木工程 • 上一篇    

基于短期风速资料的基本风压计算方法

王勃1,2(),董元正1,董丽欣1   

  1. 1.吉林建筑大学 土木工程学院,长春 130118
    2.吉林省结构与抗震科技创新中心,长春 130118
  • 收稿日期:2019-06-21 出版日期:2020-09-01 发布日期:2020-09-16
  • 作者简介:王勃(1972-),男,教授,博士.研究方向:复合材料在土木工程中的应用.E-mail:bo_wang@126.com
  • 基金资助:
    国家重点研发计划项目(2017YFC0806100);国家自然科学基金项目(51178206);吉林省高校“十三五”科研规划项目(JJKH20170253KJ);吉林省科技厅国际科技合作项目(20170414018GH)

Calculation of basic wind pressure based on short⁃term wind speed data

Bo WANG1,2(),Yuan-zheng DONG1,Li-xin DONG1   

  1. 1.School of Civil Engineering, Jilin Jianzhu University, Changchun 130118, China
    2.Jilin Structural and Earthquake Resistance Technology Innovation Center, Changchun 130118, China
  • Received:2019-06-21 Online:2020-09-01 Published:2020-09-16

摘要:

由于部分地区缺少长期风速资料,根据《建筑结构荷载规范》不能确定这些地区的基本风压,急需根据短期风速资料得到一个可供桥梁等工程结构设计使用的基本风压。选取中国54个代表性城市2013年~2017年的短期风速资料,使用月最大风速资料与极值I型分布函数进行拟合,矩估计法和Gumbel法分别对参数进行计算,采用柯尔莫格罗夫检验法进行检验。结果表明:54个城市的月最大风速资料均符合极值I型分布,用月最大风速资料与极值I型分布进行拟合时,Gumbel法比矩估计法的拟合效果好。因此,选用月最大风速资料拟合极值I型分布计算缺少长期风速资料地区的基本风压。采用该方法计算了重现期为6个月、50年、100年的基本风压,重现期为6个月的基本风压可以为设计使用年限较短的工程(如拆除工程)提供参考风压,重现期为50年、100年的基本风压可以为没有长期风速资料地区的桥梁等工程结构设计提供依据。最后,采用本文方法对缺少长期风速资料的阜阳市基本风压计算提供算例。本文方法对没有长期风速资料和重现期较小的风压确定具有重要工程意义。

关键词: 土木工程, 基本风压, 短期风速, 极值I型分布, Gumbel法, 柯尔莫格罗夫检验法

Abstract:

Due to the lack of long-term wind speed data in some regions, the basic wind pressure can not be calculated according to the Building Structure Load Code. It is urgent to get a basic wind pressure for the design of bridges and other engineering structures according to the short-term wind speed data. In this paper, the short-term wind speed data of 54 representative cities in China in 2013~2017 are selected, respectively. The extreme value I-type distribution function is used to fit the parameter estimation with the monthly maximum wind speed data. The moment estimation method and Gumbel method are used to calculate the parameters, which are examined examined using the Kolmogorov-Smirnov test method. The results show that the monthly maximum wind speed data in 54 cities are in line with the extreme value type I distribution. When fitting the monthly maximum wind speed data with the extreme value type I distribution, the Gumbel method has a better fitting effect than the moment estimation method. Therefore, it is feasible to use the maximum monthly wind speed data to fit the extreme value I-type distribution to calculate the basic wind pressure in regions lacking long-term wind speed data. Based on this method, the basic wind pressure was calculated for a recurrence period of 6 months, 50 years and 100 years. The basic wind pressure with a return period of 6 months can provide reference for projects with short design life, such as demolition works. The basic wind pressure with a return period of 50 and 100 years can provide a reference for bridge structural design in areas without long-term wind speed data. Taking Fuyang city as an example, this paper provides an example for the basic wind pressure calculation which lacks long-term wind speed data. The basic wind pressure of lacking the long-term wind speed data and short recurrence period can be calculated.

Key words: civil engineering, basic wind pressure value, short-term wind speed, extreme value type I distribution, Gumbel method, Kolmogorov-Smirnov test

中图分类号: 

  • TU312

表1

极值I型分布与月最大风速资料拟合的计算结果"

城市估计方法auσV/%Kf城市估计方法auσV/%Kf
齐齐哈尔矩估计法2.253312.90000.46852.910.0672郑州矩估计法1.662512.57000.36822.170.1205
Gumbel法2.409112.87200.46563.070.0799Gumbel法1.870212.54900.36832.190.1208
哈尔滨矩估计法2.639211.22900.55913.000.0473许昌矩估计法1.308714.14400.45662.260.1079
Gumbel法3.096011.10900.56123.570.0534Gumbel法1.437014.11900.45872.330.1037
乌鲁木齐矩估计法2.254314.67200.70164.380.1223汉中矩估计法1.454310.49930.27452.060.1002
Gumbel法2.466714.62800.69544.320.1198Gumbel法1.570410.48390.27052.170.1063
喀什矩估计法2.604813.61600.91275.730.0882重庆矩估计法1.395313.43300.31291.750.0725
Gumbel法2.707813.53900.86374.620.0673Gumbel法1.495713.41200.30631.900.0861
酒泉矩估计法2.483213.13300.55362.760.0852宜昌矩估计法1.373210.74300.30421.930.0850
Gumbel法2.616413.09200.53622.630.0682Gumbel法1.491010.71400.27941.520.0751
西宁矩估计法1.858310.78990.49973.460.1341武汉矩估计法1.465812.80500.30031.900.0771
Gumbel法1.996810.76830.50863.680.1361Gumbel法1.558112.78500.29421.860.0795
包头矩估计法2.080215.47700.64703.300.1161长沙矩估计法1.529112.44300.28201.720.1143
Gumbel法2.217815.44300.65173.100.1053Gumbel法1.660012.41100.24191.480.0978
呼和浩特矩估计法1.699518.98000.41501.300.0705毕节矩估计法1.198611.28190.20831.380.0905
Gumbel法1.845418.94400.39081.480.0838Gumbel法1.212911.26490.19851.550.1085
大同矩估计法1.594416.79700.45601.970.0877岳阳矩估计法1.654012.95400.33151.820.0980
Gumbel法1.731016.76400.44222.160.0907Gumbel法1.774012.93400.32932.010.1043
银川矩估计法2.534212.08400.56123.880.1460赣州矩估计法1.010811.1110.28331.540.0580
Gumbel法2.985112.05800.56933.860.1416Gumbel法1.097511.0890.27391.570.0688
石家庄矩估计法1.793413.29800.44672.860.1069贵阳矩估计法1.027411.96700.25041.170.0693
Gumbel法1.947013.26000.42242.350.0956Gumbel法1.115611.94500.23571.360.0883
太原矩估计法1.313715.12800.43261.670.0823桂林矩估计法1.183712.08400.25881.480.0765
Gumbel法1.426315.10100.42741.640.0749Gumbel法1.229412.06900.25891.510.0893
西安矩估计法1.703013.01300.56622.900.0765常州矩估计法1.315114.17300.21731.010.0703
Gumbel法1.848812.97700.56002.860.0747Gumbel法1.410814.15500.20600.920.0591
长春矩估计法2.321814.67200.41132.490.0813蚌埠矩估计法1.018315.24000.36621.310.0642
Gumbel法2.681014.64300.40182.230.0658Gumbel法1.105615.21900.36511.310.0704
延吉矩估计法2.105715.46900.74194.090.1304南京矩估计法1.108615.80100.26890.990.0476
Gumbel法2.286215.42400.73813.770.1187Gumbel法1.207115.77800.25461.010.0428
沈阳矩估计法2.198312.33500.37932.200.0585合肥矩估计法1.241614.38800.45751.520.0880
Gumbel法2.529712.30700.36792.200.0636Gumbel法1.371414.36700.46321.930.1030
张家口矩估计法1.589817.00100.60162.350.1197上海矩估计法2.329415.22400.29291.180.0654
Gumbel法1.839916.97600.61292.390.1134Gumbel法2.386115.20800.29331.160.0838
大连矩估计法2.328816.30200.62143.450.1352杭州矩估计法1.234914.19900.27911.200.0626
Gumbel法2.453416.26200.61393.250.1371Gumbel法1.280214.18000.27331.220.0741
北京矩估计法1.686114.55800.47922.280.1700金华矩估计法1.136913.71900.26631.300.0519
Gumbel法1.820514.53700.48802.360.1734Gumbel法1.218013.70000.25901.270.0652
天津矩估计法1.504216.80900.49691.910.1025南昌矩估计法1.958911.47300.28251.390.0603
Gumbel法1.633216.77700.49112.110.1015Gumbel法2.075611.45300.27731.600.0783
济南矩估计法1.432015.57500.26880.990.0936福州矩估计法2.504414.52600.43342.130.0833
Gumbel法1.593915.55100.25250.970.1082Gumbel法2.793314.49300.41922.170.0811
青岛矩估计法1.915017.72800.42332.090.1082厦门矩估计法2.936013.19700.24991.270.0632
Gumbel法2.017317.70300.42172.080.0933Gumbel法3.296013.17200.22671.290.0714
拉萨矩估计法1.199112.02200.40702.480.1350广州矩估计法1.602814.35900.57083.090.1331
Gumbel法1.223112.00800.41772.710.1412Gumbel法1.789514.33300.57983.040.1271
成都矩估计法1.385610.74600.36932.640.1219南宁矩估计法1.437211.72900.24251.400.0596
Gumbel法1.455810.72520.36962.410.1069Gumbel法1.560311.69900.19821.030.0580
绵阳矩估计法1.152310.98900.34122.310.0918深圳矩估计法2.764014.66100.33661.770.0907
Gumbel法1.263610.96700.33722.310.0837Gumbel法3.059014.63500.32461.860.1003
大理矩估计法2.670911.78800.26191.430.0908海口矩估计法2.986915.0421.02744.220.1452
Gumbel法3.113311.75600.21991.250.0768Gumbel法3.327814.9941.04084.970.1610
昆明矩估计法1.851212.15600.32421.850.0649三亚矩估计法3.247816.56101.00282.700.0931
Gumbel法2.042512.12300.29171.440.0493Gumbel法3.526116.49200.98313.580.1071

表2

基于短期风速资料下的基本风压 (kN/m2)"

编号城市不同重现期编号城市不同重现期
6个月50年100年6个月50年100年
1齐齐哈尔0.1760.4870.54728郑州0.1510.3670.406
2哈尔滨0.1550.5210.59429许昌0.1670.3310.360
3乌鲁木齐0.2080.5120.56930汉中0.0980.2110.232
4喀什0.1830.4670.52131重庆0.1250.2320.251
5酒泉0.1770.4830.54132宜昌0.1070.2500.276
6西宁0.0830.1730.19033武汉0.1370.2680.292
7包头0.2060.4260.46734长沙0.1420.3230.357
8呼和浩特0.2980.5770.62635毕节0.0930.1980.217
9大同0.2520.5540.60936岳阳0.1280.2840.312
10银川0.1730.5510.62637赣州0.1490.3930.439
11石家庄0.1680.4030.44738贵阳0.1170.2220.240
12太原0.1870.3570.38839桂林0.1220.2420.264
13西安0.1590.3750.41540常州0.1670.3280.356
14长春0.2250.6170.69141蚌埠0.1780.3030.324
15延吉0.2280.5510.61042南京0.1940.3370.361
16沈阳0.1680.4950.55843合肥0.1700.3270.354
17张家口0.2470.5040.54944上海0.2260.5670.629
18大连0.2600.6550.72845杭州0.1580.2800.301
19北京0.1890.4180.45946金华0.1520.2820.304
20天津0.2330.4520.49047南昌0.1370.3730.417
21济南0.2030.4040.43948福州0.2260.6380.717
22青岛0.2580.5360.58449厦门0.2150.7160.814
23拉萨0.0910.1500.15950广州0.1840.4100.445
24成都0.0980.2030.22251南宁0.1260.2870.316
25绵阳0.1050.2210.22452深圳0.2400.7130.805
26大理0.1770.6110.69853海口0.2360.7590.862
27昆明0.1370.3220.35654三亚0.3090.9301.050

图1

重现期为50年的基本风压对比"

图2

重现期为100年的基本风压对比"

1 Wang B, Etheridge D W, Ohba M. Wind tunnel investigation of natural ventilation through multiple stacks. Part 1: mean values[J]. Building & Environment, 2011, 46(7): 1380-1392.
2 GB50009—2012. 建筑结构荷载规范[S].
3 Mircea G. Estimation of extreme wind from short records[J]. Journal of the Structural Division, 1982, 108(5): 1034-1048.
4 陈朝辉, 管前乾. 基于短期资料的重庆风速极值渐进分布分析[J]. 重庆大学学报: 自然科学版, 2006, 29(12): 88-92.
Chen Zhao-hui, Guan Qian-qian. Simulating of asymptotic distributions of extreme wind speed in Chongqing using short-term wind speed records[J]. Journal of Chongqing University(Natural Science Edition), 2006, 29(12): 88-92.
5 罗乃东. 基于可靠度的高层、高耸结构抗风分析[D]. 大连: 大连理工大学土木工程学院, 2002.
Luo Nai-dong. Study of wind-resistant of tall building base on reliability theory[D]. Dalian: School of Civil Engineering, Dalian University of Technology, 2002.
6 Lee B H, Ahn D J, Kim H G, et al. An estimation of the extreme wind speed using the Korea wind map[J]. Renewable Energy, 2012, 42: 4-10.
7 孟庆珍, 唐谟智. 成都地面气温与风速年极大值的渐近分布及参数估计[J]. 成都气象学院学报, 1997, 12(4): 284-291.
Meng Qing-zhen, Tang Mo-zhi. On asymptotic distribution of yearly maximum values of surface temperature and wind speed over Chengdu and the estimation of their parameters[J]. Journal of Chengdu Institute of Meteorology, 1997, 12(4): 284-291.
8 Harris I. Generalised pareto methods for wind extremes. Useful tool or mathematical mirage?[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2005, 93(5): 341-360.
9 Galambos J. The Cassical Extreme Value Model: Mathematical Results Versus Statistical Inference[M]. New York: Statistics for the 21st Century, 2000: 173-187.
10 Elahi A S, Ghoranneviss M, Emami M. Comparative measurements of plasma position using multipole moments method and analytical solution of grad-shafranov equation in IR-T1 tokamak[J]. Journal of Fusion Energy, 2009, 28(4): 385-389.
11 张勇. 基本风压、雪压统计分析与荷载组合系数研究[D]. 沈阳: 沈阳建筑大学土木工程学院, 2011.
Zhang Yong. Statistical analysis about basic wind and snow pressure and research about load combinatorial coefficient[D]. Shenyang: School of Civil Engineering, Shenyang University of Architecture, 2011
12 段忠东, 周道成. 极值概率分布参数估计方法的比较研究[J]. 哈尔滨工业大学学报, 2004, 36(12): 1605-1609.
Duan Zhong-dong, Zhou Dao-cheng. A comparative study on parameter estimate method for extremal value distribution[J]. Journal of Harbin Institute of Technology, 2004, 36(12): 1605-1609.
13 康朝杰, 杜文风, 杨雪. 基于极大似然法的雪荷载计算与分析[J]. 河南大学学报: 自然科学版, 2016, 46(2): 220-225.
Kang Chao-jie, Du Wen-feng, Yang Xue, et al. Calculation and analysis of snow loads based on the maximum likelihood method[J]. Journal of Henan University(Natural Science), 2016, 46(2): 220-225.
14 Zhang C L, Fan J H. An X-ray luminosity analysis for FRIs and FRIIs[J]. Science in China Series G Physics Mechanics and Astronomy, 2009, 52(9): 1434-1441.
15 方晓, 张运福, 房一禾. 辽宁省沿海地区极值风速概率分布特征[J]. 现代农业科技, 2015(22): 256-257, 259.
Fang Xiao, Zhang Yun-fu, Fang Yi-he. Characteristic of probability distribution of extreme wind speeds in coast area of Liaoning province[J]. XianDai NongYe KeJi, 2015(22): 256-257, 259.
16 叶征伟. 山区高墩大跨连续刚构桥风环境及风荷载研究[D]. 杭州: 浙江大学建筑工程学院, 2012.
Ye Zheng-wei. Study on the wind-environment and wind loads of the long-span continuous rigid frame bridge with tall piers in mountainous areas[D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2012.
17 屠其璞. 气象应用概率统计学[M]. 北京: 气象出版社, 1984.
18 王卫锋, 颜全胜, 李立军, 等. 大跨度斜拉桥侧风非线性分析[J]. 吉林大学学报: 工学版, 2007, 37(4): 786-789.
Wang Wei-feng, Yan Quan-sheng, Li Li-jun, et al. Nonlinear analysis for a long span cable stayed bridge under lateral wind loads[J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(4): 786-789.
19 姜浩, 郭学东, 张艳辉. 基于时域分析的风载激励下桥梁结构动力特性识别[J]. 吉林大学学报: 工学版, 2011,41(5): 1279-1283.
Jiang Hao, Guo Xue-dong, Zhang Yan-hui. Dynamic behavior identification of concrete bridge structure under wind load excitation based on time-domain analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(5): 1279-1283.
[1] 薛素铎,鲁建,李雄彦,刘人杰. 跳格布置对环形交叉索桁结构静动力性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1687-1697.
[2] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[3] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[4] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[5] 张军,钱诚,郭春燕,钱玉君. 基于多源时空数据的建筑宜居性动态设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1169-1173.
[6] 梁宁慧,缪庆旭,刘新荣,代继飞,钟祖良. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报(工学版), 2019, 49(4): 1144-1152.
[7] 张磊,刘保国,储昭飞. 深厚孔隙砂岩含水层疏干排水对盾构斜井的 影响模型试验[J]. 吉林大学学报(工学版), 2019, 49(3): 788-797.
[8] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[9] 王腾, 周茗如, 马连生, 乔宏霞. 基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[10] 郭楠, 张平阳, 左煜, 左宏亮. 竹板增强胶合木梁受弯性能[J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
[11] 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[12] 郭学东, 马立军, 张云龙. 集中力作用下考虑剪切滑移效应的双层结合面组合梁解析解[J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
[13] 赵玉, 李衍赫, 张培, 赵科, 刘伟超. 粘土的动力特性试验[J]. 吉林大学学报(工学版), 2015, 45(6): 1791-1797.
[14] 侯忠明, 王元清, 夏禾, 张天申. 移动荷载作用下的钢-混简支结合梁动力响应[J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427.
[15] 王甲春, 阎培渝. 海洋环境下钢筋混凝土中钢筋锈蚀的概率[J]. 吉林大学学报(工学版), 2014, 44(2): 352-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!