吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (2): 677-684.doi: 10.13229/j.cnki.jdxbgxb20191064
• 计算机科学与技术 • 上一篇
摘要:
水下图像深度图估计的准确性影响复原后的图像质量,为得到更加准确的深度图,提出了一种基于衰减通道结合亮度图的深度图求解算法,并利用该深度图复原水下图像。首先,根据图像像素值与场景深度的关系估计水下图像的深度图,并使用图像的亮度图对深度图进行修正和细化;然后,利用深度图计算图像的大气光值和透射率图;最后,通过逆求解水下成像模型复原退化的图像。实验证明:与现有算法相比,利用该深度图得到的模型参数更加准确,复原后的图像不仅拥有更好的对比度,而且能保持自然真实的颜色。
中图分类号:
1 | Akkaynak D, Treibitz T, Shlesinger T, et al. What is the space of attenuation coefficients in underwater computer vision?[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawai, 2017: 568-577. |
2 | 徐岩, 孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报: 工学版, 2018, 48(6): 1895-1903. |
Xu Yan,Sun Mei-shuang. Enhancing underwater image based on convolutional neural networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1895-1903. | |
3 | 郭继昌, 茹丽, 郭春乐. 基于梯度通道和优化透射率的水下图像复原[J]. 吉林大学学报: 工学版,2020, 50(4): 1435-1442. |
Guo Ji-chang, Ru Li, Guo Chun-le. Underwater image restoration based on gradient channel and optimize[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1435-1442. | |
4 | 程艳芬, 姚丽娟, 袁巧, 等. 水下视频图像清晰化方法[J].吉林大学学报: 工学版,2020, 50(2): 668-677. |
Cheng Yan-fen, Yao Li-juan, Yuan Qiao, et al. Clearing strategy of underwater video image[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 668-677. | |
5 | Akkaynak D, Treibitz T. A revised underwater image formation[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 6723-6732. |
6 | Paulo-Drews J R, Nascimento E, Moraes F, et al. Transmission estimation in underwater single images[C]∥IEEE International Conference on Computer Vision Workshops, Sydney, 2013: 825-830. |
7 | He K M, Sun J, Tang X O, et al. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(12): 2341-2353. |
8 | Galdran A, Pardo D, Picón A, et al. Automatic red-channel underwater image restoration[J]. Journal of Visual Communication & Image Representation, 2015, 26: 132-145. |
9 | Peng Y T, Cosman P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579-1594. |
10 | Li C, Guo J. Underwater image enhancement by dehazing and color correction[J]. Journal of Electronic Imaging, 2015, 24(3): 033023. |
11 | Peng Y T, Cao K, Cosman P C. Generalization of the dark channel prior for single image restoration[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2856-2868. |
12 | Tan R T. Visibility in bad weather from a single image[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, 2008: 1-8. |
13 | McGlamery B L. A computer model for underwater camera systems[J]. Society of Photo-Optical Instrumentation Engineers, 1980, 208: 221-231. |
14 | Zhao X, Jin T, Qu S. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 2015, 94:163-172. |
15 | He K, Sun J, Tang X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(6): 1397-1409. |
16 | Mobley C D. Radiative transfer in the ocean[J]. Encyclopedia of Ocean Sciences, 2001, 5: 379-388. |
17 | Wang S, Ma K, Yeganeh H, et al. A patch-structure representation method for quality assessment of contrast changed images[J]. IEEE Signal Processing Letters, 2015, 22(12): 2387-2390. |
18 | Panetta K, Gao C, Agaian S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2015, 41(3): 1-11. |
19 | Yang M, Sowmya A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071. |
[1] | 史再峰,李金卓,曹清洁,李慧龙,胡起星. 基于生成对抗网络的低剂量能谱层析成像去噪算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1755-1764. |
[2] | 王柯俨,王迪,赵熹,陈静怡,李云松. 基于卷积神经网络的联合估计图像去雾算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1771-1777. |
[3] | 刘国华,周文斌. 基于卷积神经网络的脉搏波时频域特征混叠分类[J]. 吉林大学学报(工学版), 2020, 50(5): 1818-1825. |
[4] | 谌华,郭伟,闫敬文,卓文浩,吴良斌. 基于深度学习的SAR图像道路识别新方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1778-1787. |
[5] | 程艳芬,姚丽娟,袁巧,陈先桥. 水下视频图像清晰化方法[J]. 吉林大学学报(工学版), 2020, 50(2): 668-677. |
[6] | 张薇,韩勇,金铭,乔晓林. 基于托普利兹矩阵集重构的相干信源波达方向估计[J]. 吉林大学学报(工学版), 2020, 50(2): 703-710. |
[7] | 刘富, 权美静, 王柯, 刘云, 康冰, 韩志武, 侯涛. 仿蝎子振源定位机理的位置指纹室内定位方法[J]. 吉林大学学报(工学版), 2019, 49(6): 2076-2082. |
[8] | 于晓辉,张志成,李新波,孙晓东. 基于状态空间模型的指数衰减正弦信号参数估计[J]. 吉林大学学报(工学版), 2019, 49(6): 2083-2088. |
[9] | 马子骥,卢浩,董艳茹. 双通道单图像超分辨率卷积神经网络[J]. 吉林大学学报(工学版), 2019, 49(6): 2089-2097. |
[10] | 郭继昌,吴洁,郭春乐,朱明辉. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报(工学版), 2019, 49(5): 1726-1734. |
[11] | 曹运合,曾丽,王宇. 基于特征空间的子阵级自适应和差波束测角方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1735-1744. |
[12] | 卢洋,王世刚,赵文婷,赵岩. 基于离散Shearlet类别可分性测度的人脸表情识别方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1715-1725. |
[13] | 董超,刘晶红,徐芳,王仁浩. 光学遥感图像舰船目标快速检测方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1369-1376. |
[14] | 王柯俨,胡妍,王怀,李云松. 结合天空分割和超像素级暗通道的图像去雾算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1377-1384. |
[15] | 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985. |
|