吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1778-1787.doi: 10.13229/j.cnki.jdxbgxb20190490
• 计算机科学与技术 • 上一篇
谌华1,2,3(),郭伟1,2(),闫敬文4,卓文浩4,吴良斌5
Hua CHEN1,2,3(),Wei GUO1,2(),Jing-wen YAN4,Wen-hao ZHUO4,Liang-bin WU5
摘要:
针对传统合成孔径雷达(SAR)图像道路识别步骤繁杂的问题,提出了一种新的基于深度学习的SAR图像道路识别方法。首先,在原有全卷积神经网络(FCN)的基础上通过改进激活函数构造一种新的卷积神经网络M-FCN,有效缓解了道路信息丢失问题;然后,将该卷积神经网络和自主构建的道路标签集应用于模拟SAR和真实SAR图像道路识别实验中,提高了鲁棒性。实验结果表明:与支持向量机(SVM)、传统全卷积神经网络和其他算法比较,该算法可以用来识别道路特征,并具有较高的精度和可靠性。
中图分类号:
1 | Bajcsy R, Tavakoli M. Computer recognition of roads from satellite pictures[J]. IEEE Transactions on Systems Man and Cybernetics, 1976, 6(9): 623-637. |
2 | 张永宏, 何静, 阚希, 等. 遥感图像道路提取方法综述[J]. 计算机工程与应用, 2018, 54(13): 1-10. |
Zhang Yong-hong, He Jin, Kan Xi, et al. Summary of road extraction methods for remote sensing images[J]. Computer Engineering and Applications, 2018, 54(13): 1-10. | |
3 | Samadani R, Vesecky J F. Finding curvilinear features in speckled images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 669-673. |
4 | Tupin F, Maitre H, Mangin J F, et al. Detection of linear features in SAR images: application to road network extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(2): 434-453. |
5 | Negri M, Gamba P, Lisini G, et al. Junction-aware extraction and regularization of urban road networks in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2962-2971. |
6 | Lisini G, Tison C, Tupin F, et al. Feature fusion to improve road network extraction in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(2): 217-221. |
7 | Lu P P, Du K N, Yu W D, et al. A new region growing-based method for road network extraction and its application on different resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 4772-4783. |
8 | Jin R, Zhou W, Yin J, et al. CFAR line detector for polarimetric SAR images using wilks’ test statistic[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 711-715. |
9 | Xiao F H, Chen Y, Tong L, et al. Road detection in high-resolution SAR images using duda and path operators[C]∥IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016: 1266-1269. |
10 | Wei Q R, Feng D Z. Extraction line feature in SAR images through image edge fields[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(4): 540-544. |
11 | 程江华, 高贵, 库锡树, 等. SAR 图像道路网提取方法综述[J]. 中国图象图形学报, 2013, 18(1): 11-23. |
Cheng Jiang-hua, Gao Gui, Xi-shu Ku, et al. Review of road network extraction from SAR images[J]. Journal of Image and Graphics, 2013, 18(1): 11-23. | |
12 | Tupin F, Houshmand B, Datcu M. Road detection in dense urban areas using SAR imagery and the usefulness of multiple views[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2405-2414. |
13 | Jeon B K, Jang J H, Hong K S. Road detection in spaceborne SAR images using a genetic algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 22-29. |
14 | 张广伟, 张永红. 基于链码优化的SAR 影像城市道路网络提取[J]. 遥感学报, 2008, 12(4): 620-625. |
Zhang Guang-wei, Zhang Yong-hong. Road network extraction of urban areasin SAR image based on optimization of chain code[J]. Journal of Remote Sensing, 2008, 12(4): 620-625. | |
15 | 洪日昌, 吴秀清, 刘媛, 等. 低分辨率遥感影像中道路的全自动提取方法研究[J]. 遥感学报, 2008, 12(1): 36-45. |
Hong Ri-chang, Wu Xiu-qing, Liu Yuan, et al. Research on roads automatic extraction from low resolution remote sensing image[J]. Journal of Remote Sensing, 2008, 12(1): 36-45. | |
16 | Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]∥International Conference on Neural Information Processing Systems, Curran Associates Inc., 2012: 1097-1105. |
17 | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Vision and Pattern Recognition, ArXiv: 1409.1556, 2014. |
18 | Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1-9. |
19 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, LasVegas, 2016: 770-778. |
20 | Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. |
21 | Wang Y, Wang C, Zhang H. Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 SAR images[J]. Remote Sensing Letters, 2018, 9(8): 780-788. |
22 | Wang Y Y, Wang C, Zhang H, et al. Automatic ship detection based on retina net using multi-resolution Gaofen-3 imagery[J]. Remote Sensing, 2019, 11(5): 531. |
23 | Corentin H, Majid A S, Nina M. Road segmentation in SAR satellite images with deep fully convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12): 1867-1871. |
24 | Jonathan L, Evan S, Trevor D. Fully convolutional networks for semantic segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 3431-3440. |
25 | Wu X, He R, Sun Z. A lightened CNN for deep face representation[J]. Computer Science,arXiv:1511.02683, 2015. |
26 | Cheng G, Wang Y, Xu S, et al. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(6): 3322-3337. |
[1] | 史再峰,李金卓,曹清洁,李慧龙,胡起星. 基于生成对抗网络的低剂量能谱层析成像去噪算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1755-1764. |
[2] | 王柯俨,王迪,赵熹,陈静怡,李云松. 基于卷积神经网络的联合估计图像去雾算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1771-1777. |
[3] | 赵宏伟,刘晓涵,张媛,范丽丽,龙曼丽,臧雪柏. 基于关键点注意力和通道注意力的服装分类算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1765-1770. |
[4] | 程艳芬,姚丽娟,袁巧,陈先桥. 水下视频图像清晰化方法[J]. 吉林大学学报(工学版), 2020, 50(2): 668-677. |
[5] | 郜峰利,陶敏,李雪妍,何昕,杨帆,王卓,宋俊峰,佟丹. 基于深度学习的CT影像脑卒中精准分割[J]. 吉林大学学报(工学版), 2020, 50(2): 678-684. |
[6] | 张薇,韩勇,金铭,乔晓林. 基于托普利兹矩阵集重构的相干信源波达方向估计[J]. 吉林大学学报(工学版), 2020, 50(2): 703-710. |
[7] | 刘富, 权美静, 王柯, 刘云, 康冰, 韩志武, 侯涛. 仿蝎子振源定位机理的位置指纹室内定位方法[J]. 吉林大学学报(工学版), 2019, 49(6): 2076-2082. |
[8] | 于晓辉,张志成,李新波,孙晓东. 基于状态空间模型的指数衰减正弦信号参数估计[J]. 吉林大学学报(工学版), 2019, 49(6): 2083-2088. |
[9] | 马子骥,卢浩,董艳茹. 双通道单图像超分辨率卷积神经网络[J]. 吉林大学学报(工学版), 2019, 49(6): 2089-2097. |
[10] | 郭继昌,吴洁,郭春乐,朱明辉. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报(工学版), 2019, 49(5): 1726-1734. |
[11] | 曹运合,曾丽,王宇. 基于特征空间的子阵级自适应和差波束测角方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1735-1744. |
[12] | 徐谦,李颖,王刚. 基于深度学习的行人和车辆检测[J]. 吉林大学学报(工学版), 2019, 49(5): 1661-1667. |
[13] | 卢洋,王世刚,赵文婷,赵岩. 基于离散Shearlet类别可分性测度的人脸表情识别方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1715-1725. |
[14] | 董超,刘晶红,徐芳,王仁浩. 光学遥感图像舰船目标快速检测方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1369-1376. |
[15] | 王柯俨,胡妍,王怀,李云松. 结合天空分割和超像素级暗通道的图像去雾算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1377-1384. |
|