吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2874-2882.doi: 10.13229/j.cnki.jdxbgxb20210430

• 交通运输工程·土木工程 • 上一篇    下一篇

水泥改性废弃泥浆损伤模型及时间效应

姜屏1,2(),周琳1,毛天豪1,袁俊平2,王伟1,李娜1()   

  1. 1.绍兴文理学院 土木工程学院,浙江 绍兴 312000
    2.河海大学 岩土力学与堤坝工程教育部重点实验室,南京 210098
  • 收稿日期:2021-05-13 出版日期:2022-12-01 发布日期:2022-12-08
  • 通讯作者: 李娜 E-mail:jiangping@usx.edu.cn;lina@usx.edu.cn
  • 作者简介:姜屏(1985-),男,副教授,博士. 研究方向:废弃土料再生利用. E-mail:jiangping@usx.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(LQ20E080005);岩土力学与堤坝工程教育部重点实验室开放基金项目(2019020)

Damage model and time effect of cement⁃modified waste slurry

Ping JIANG1,2(),Lin ZHOU1,Tian-hao MAO1,Jun-ping YUAN2,Wei WANG1,Na LI1()   

  1. 1.School of Civil Engineering,Shaoxing University,Shaoxing 312000,China
    2.Key Laboratory of Geomechanics and Embankment Engineering,Ministry of Education,Hohai University,Nanjing 210098,China
  • Received:2021-05-13 Online:2022-12-01 Published:2022-12-08
  • Contact: Na LI E-mail:jiangping@usx.edu.cn;lina@usx.edu.cn

摘要:

通过无侧限抗压强度试验,分析了水泥改性泥浆(CMS)的应力-应变曲线、无侧限抗压强度(UCS)及弹性模量,并建立了CMS弹性模量时间效应模型。基于损伤力学,采用粒子群优化(PSO)算法识别随机场参数,建立了CMS细观随机损伤模型,并提出了随机场参数时间效应模型。结果表明:①CMS的应力-应变曲线为软化型曲线,水泥最佳掺量为20%,弹性模量与水泥掺量和龄期具有函数关系。②细观随机损伤模型能够描述CMS的应力-应变关系,并且随机场参数λ与养护时间具有函数关系。③通过损伤变量D与应变演变规律,能从细观随机损伤角度解释CMS宏观应力-应变特性。

关键词: 岩土工程, 水泥改性泥浆, 无侧限抗压强度, 弹性模量, 时间效应, 随机损伤模型

Abstract:

Through the unconfined compressive strength test, the stress-strain curve, unconfined compressive strength, and elastic modulus of cement-modified slurry (CMS) were analyzed, and the time effect model of CMS elastic modulus was established. Based on damage mechanics, a particle swarm optimization (PSO) algorithm was used to identify random field parameters, a CMS mesoscopic random damage model was established, and a random field parameter time effect model was proposed. The results show that: ①the stress-strain curve of CMS is a softening curve, the optimal cement content is 20%, and the elastic modulus is a function of cement content and curing time. ②The mesoscopic random damage model can describe the stress-strain relationship of CMS, and the random field parameter λ has a functional relationship with the curing time. ③The macroscopic stress-strain characteristics of CMS can be explained from the perspective of meso-random damage through the damage variable D and strain evolution.

Key words: geotechnical engineering, cement-modified slurry(CMS), unconfined compression strength(UCS), elastic modulus, time effect, stochastic damage model

中图分类号: 

  • TU447

图1

应力-应变曲线"

表1

不同水泥掺量的CMS无侧限抗压强度增长率"

水泥掺量/%无侧限抗压强度增长率 η
7 d14 d28 d56 d90 d120 d150 d180 d
50.380.711.001.331.631.721.731.78
100.550.811.001.121.421.451.491.52
150.590.831.001.211.321.411.441.48
200.530.811.001.131.271.341.361.37
250.650.801.001.171.341.391.421.47

表2

CMS弹性模量 (MPa)"

水泥掺量/%弹性模量
7 d14 d28 d56 d90 d120 d150 d180 d
53.510192327312829
10516273245403733
15927374968676159
201740446483808474
2529455875101918675

图2

弹性模量随时间变化曲线"

图3

预测-实测数据相关性拟合"

图4

龄期和参数λ的关系曲线"

图5

CMS细观随机损伤本构模型与试验结果曲线对比"

图6

细观单元损伤演化"

1 房凯, 张忠苗, 刘兴旺, 等. 工程废弃泥浆污染及其防治措施研究[J]. 岩土工程学报, 2011, 33(): 238-241.
Fang Kai, Zhang Zhong-miao, Liu Xing-wang, et al. Pollution of construction waste slurry and prevention measures[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Sup.2): 238-241.
2 Zhang Z M, Fang K, Luo J C, et al. Study on zero discharge treatment technology of waste bored pile slurry[J]. Advanced Materials Research, 2011, 261: 1355-1359.
3 Linares-Unamunzaga A, Pérez-Acebo H, Rojo M, et al. Flexural strength prediction models for soil–cement from unconfined compressive strength at seven days[J]. Materials, 2019, 12(3): No.387.
4 Liu Y, Hu J, Li Y P, et al. Statistical evaluation of the overall strength of a soil-cement column under axial compression[J]. Construction and Building Materials, 2017, 132: 51-60.
5 Kawasaki T, Niina A, Saitoh S, et al. Deep mixing method using cement hardening agent[C]∥Proc 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 1981:721-724.
6 Mahedi M, Cetin B, Cement White D., lime, and fly ashes in stabilizing expansive soils : performance evaluation and comparison[J]. Journal of Materials in Civil Engineering, 2020, 32(7): No.04020177.
7 Yoobanpot N, Jamsawang P, Horpibulsuk S. Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue[J]. Applied Clay Science, 2017, 141: 146-156.
8 Jiang P, Mao T H, Li N, et al. Characterization of short-term strength properties of fiber/cement-modified slurry[J]. Advances in Civil Engineering, 2019, 2019: 1-9.
9 林枫, Christian Meyer. 硬化水泥浆体弹性模量细观力学模型[J]. 复合材料学报, 2007(2): 184-189.
Lin Feng, Christian Meyer. Micromechanics model for the effective elastic properties of hardened cement pastes[J]. Acta Materiae Compositae Sinica, 2007(2): 184-189.
10 Subramaniam K, Wang X J. Ultrasonic shear wave reflection method for direct determination of porosity and shear modulus in early-age cement paste and mortar[J]. Journal of Engineering Mechanics, 2016, 142(9): 04016057.
11 Diambra A, Ibraim E. Fibre-reinforced sand: interaction at the fibre and grain scale[J]. Géotechnique, 2015, 65(4): 296-308.
12 Haecker C J, Garboczi E J, Bullard J W, et al. Modeling the linear elastic properties of portland cement paste[J]. Cement and Concrete Research, 2015, 35(10): 1948-1960.
13 宁宝宽. 环境侵蚀下水泥土的损伤破裂试验及其本构模型[D]. 沈阳:东北大学资源与土木工程学院, 2006.
Ning Bai-kuan. Experiments and its constitutive model of cement-mixed soil under environmental erosion[D]. Shenyang: College of Resources and Civil Engineering, Northeastern University, 2006.
14 Chen S l, Ning B K, Bao W B . et al. A damage constitutive model of cemented soil on meso-fracture process testing[J]. Rock and Soil Mechanics, 2007, 28(1): 93-96.
15 Wan K, Xue X. In situ compressive damage of cement paste characterized by lab source X-ray computer tomography[J]. Materials Characterization, 2013, 82: 32-40.
16 Zhou H, Li J, Spencer B F. Multiscale random Fields-based damage modeling and analysis of concrete structures[J]. Journal of Engineering Mechanics, 2019, 145(7): No. 04019045.
17 宋小园,申向东,李红云, 等. 掺矿粉水泥砂浆早期弹性模量的研究[J]. 硅酸盐通报, 2013, 32(10): 2138-2142.
Song Xiao-yuan, Shen Xiang-dong, Li Hong-yun, et al. Study on early-age elastic modulus of cement mortar with mineral powder dosage[J]. Bulletin of The Chinese Ceramic Society, 2013, 32(10): 2138-2142.
18 李杰, 张其云. 混凝土随机损伤本构关系[J]. 同济大学学报:自然科学版, 2001(10): 1135-1141.
Li Jie, Zhang Qi-yun. Study of stochastic damage constitutive relationship for concrete material[J]. Journal of Tongji University, 2001(10): 1135-1141.
19 李杰, 卢朝辉, 张其云. 混凝土随机损伤本构关系——单轴受压分析[J]. 同济大学学报:自然科学版, 2003(5): 505-509.
Li Jie, Lu Zhao-hui, Zhang Qi-yun. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress[J]. Journal of Tongji Nniversity, 2003(5): 505-509.
20 李杰, 任晓丹. 混凝土随机损伤力学研究进展[J]. 建筑结构报, 2014, 35(4): 20-29.
Li Jie, Ren Xiao-dan. Recent developments on stochastic damage mechanics for concrete[J]. Journal of Building Structures, 2014, 35(4): 20-29.
21 Kandarpa S, Kirkner D J. Stochastic damage model for brittle materiel subjected to monotonic loading[J]. Journal of Engineering Mechanics, 1996,126(8): 788-795.
22 李杰,吴建营, 陈建兵. 混凝土随机损伤力学[M]. 北京:科学出版社, 2014.
23 秦静, 郑德, 裴毅强, 等. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报:工学版, 2022, 52(7): 1489-1498.
Qin Jing, Zheng De, Pei Yi-qiang, et al. Engine performance and emission prediction method based on PSO-GPR[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(7): 1489-1498.
24 Xue B, Zhang M, Browne W N. Particle swarm optimization for feature selection in classification: a multi-objective approach.[J]. IEEE Trans Cybern, 2013, 43(6): 1656-1671.
25 Mohammad K, Mohd R T, Ahmed E S, et al. Modified particle swarm optimization for optimum design of spread footing and retaining wall[J]. Journal of Zhejiang University Science A, 2011, 12(6):3-15.
[1] 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855.
[2] 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637.
[3] 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640.
[4] 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593.
[5] 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164.
[6] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[7] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[8] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[9] 徐虹, 刘亚楠, 于婷, 谷诤巍, 李湘吉, 张志强. 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理[J]. 吉林大学学报(工学版), 2017, 47(1): 191-198.
[10] 赵宏伟, 董晓龙, 张霖, 胡晓利. 块体材料弹性模量的四点弯曲自动测试[J]. 吉林大学学报(工学版), 2016, 46(1): 140-145.
[11] 孟德建, 张立军, 方明霞, 余卓平. 面向制动踏板感觉的主缸动力学模型及其关键影响因素[J]. 吉林大学学报(工学版), 2015, 45(5): 1388-1394.
[12] 姜日花1,白爽1,戴跃2 ,赵梅生3. 瘢痕疙瘩的生物力学特性[J]. 吉林大学学报(工学版), 2011, 41(6): 1675-1677.
[13] 于鸣,高青,乔广,李明,马纯强,江彦 . 地能利用中的蓄能时间效应
[J]. 吉林大学学报(工学版), 2009, 39(02): 321-0325.
[14] 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1-05.
[15] 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(suppl.2): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄志强, 王树勋, 王波. 一种近场源四维参数的估计方法[J]. 吉林大学学报(工学版), 2006, 36(01): 72 -0076 .
[2] 王生生, 王兆丹, 刘大有, 李昕, 张慧杰. 有向线对象细节拓扑关系模型[J]. 吉林大学学报(工学版), 2009, 39(05): 1292 -1296 .
[3] 鲁金忠, 罗开玉, 盛叶健, 殷苏民, 张朝阳, 钟俊伟. 激光穿透液晶掩膜的透光机理及损伤阈[J]. 吉林大学学报(工学版), 2010, 40(05): 1288 -1291 .
[4] 刘晓晓,姚俊,马光胜 . VLSI电路中时序特性分析改进方法[J]. 吉林大学学报(工学版), 2007, 37(03): 621 -0624 .
[5] 姚国凤,高雪飞. 重 频 结 构 可 控 性[J]. 吉林大学学报(工学版), 2008, 38(06): 1359 -1365 .
[6] 于繁华, 刘仁云, 周春光. 基于残余力向量和粒子群算法的结构损伤识别[J]. 吉林大学学报(工学版), 2010, 40(增刊): 339 -0343 .
[7] 刘利, 刘萍萍, 韦佳. 用于带边信息人脸数据的半监督维数约减算法[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 189 -193 .
[8] 方兵, 张雷, 曲兴田, 赵继. 角接触球轴承刚度理论计算与实验[J]. , 2012, 42(04): 840 -844 .
[9] 林翔宇, 田翔, 陈耀武. 基于失真度估计的无参考视频质量评价[J]. 吉林大学学报(工学版), 2013, 43(01): 212 -217 .
[10] 张玉华,朱延河,赵杰,任宗伟. 模块化自重构机器人的设计和运动规划[J]. 吉林大学学报(工学版), 2007, 37(04): 925 -929 .