吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2874-2882.doi: 10.13229/j.cnki.jdxbgxb20210430
姜屏1,2(),周琳1,毛天豪1,袁俊平2,王伟1,李娜1()
Ping JIANG1,2(),Lin ZHOU1,Tian-hao MAO1,Jun-ping YUAN2,Wei WANG1,Na LI1()
摘要:
通过无侧限抗压强度试验,分析了水泥改性泥浆(CMS)的应力-应变曲线、无侧限抗压强度(UCS)及弹性模量,并建立了CMS弹性模量时间效应模型。基于损伤力学,采用粒子群优化(PSO)算法识别随机场参数,建立了CMS细观随机损伤模型,并提出了随机场参数时间效应模型。结果表明:①CMS的应力-应变曲线为软化型曲线,水泥最佳掺量为20%,弹性模量与水泥掺量和龄期具有函数关系。②细观随机损伤模型能够描述CMS的应力-应变关系,并且随机场参数λ与养护时间具有函数关系。③通过损伤变量D与应变演变规律,能从细观随机损伤角度解释CMS宏观应力-应变特性。
中图分类号:
1 | 房凯, 张忠苗, 刘兴旺, 等. 工程废弃泥浆污染及其防治措施研究[J]. 岩土工程学报, 2011, 33(): 238-241. |
Fang Kai, Zhang Zhong-miao, Liu Xing-wang, et al. Pollution of construction waste slurry and prevention measures[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Sup.2): 238-241. | |
2 | Zhang Z M, Fang K, Luo J C, et al. Study on zero discharge treatment technology of waste bored pile slurry[J]. Advanced Materials Research, 2011, 261: 1355-1359. |
3 | Linares-Unamunzaga A, Pérez-Acebo H, Rojo M, et al. Flexural strength prediction models for soil–cement from unconfined compressive strength at seven days[J]. Materials, 2019, 12(3): No.387. |
4 | Liu Y, Hu J, Li Y P, et al. Statistical evaluation of the overall strength of a soil-cement column under axial compression[J]. Construction and Building Materials, 2017, 132: 51-60. |
5 | Kawasaki T, Niina A, Saitoh S, et al. Deep mixing method using cement hardening agent[C]∥Proc 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 1981:721-724. |
6 | Mahedi M, Cetin B, Cement White D., lime, and fly ashes in stabilizing expansive soils : performance evaluation and comparison[J]. Journal of Materials in Civil Engineering, 2020, 32(7): No.04020177. |
7 | Yoobanpot N, Jamsawang P, Horpibulsuk S. Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue[J]. Applied Clay Science, 2017, 141: 146-156. |
8 | Jiang P, Mao T H, Li N, et al. Characterization of short-term strength properties of fiber/cement-modified slurry[J]. Advances in Civil Engineering, 2019, 2019: 1-9. |
9 | 林枫, Christian Meyer. 硬化水泥浆体弹性模量细观力学模型[J]. 复合材料学报, 2007(2): 184-189. |
Lin Feng, Christian Meyer. Micromechanics model for the effective elastic properties of hardened cement pastes[J]. Acta Materiae Compositae Sinica, 2007(2): 184-189. | |
10 | Subramaniam K, Wang X J. Ultrasonic shear wave reflection method for direct determination of porosity and shear modulus in early-age cement paste and mortar[J]. Journal of Engineering Mechanics, 2016, 142(9): 04016057. |
11 | Diambra A, Ibraim E. Fibre-reinforced sand: interaction at the fibre and grain scale[J]. Géotechnique, 2015, 65(4): 296-308. |
12 | Haecker C J, Garboczi E J, Bullard J W, et al. Modeling the linear elastic properties of portland cement paste[J]. Cement and Concrete Research, 2015, 35(10): 1948-1960. |
13 | 宁宝宽. 环境侵蚀下水泥土的损伤破裂试验及其本构模型[D]. 沈阳:东北大学资源与土木工程学院, 2006. |
Ning Bai-kuan. Experiments and its constitutive model of cement-mixed soil under environmental erosion[D]. Shenyang: College of Resources and Civil Engineering, Northeastern University, 2006. | |
14 | Chen S l, Ning B K, Bao W B . et al. A damage constitutive model of cemented soil on meso-fracture process testing[J]. Rock and Soil Mechanics, 2007, 28(1): 93-96. |
15 | Wan K, Xue X. In situ compressive damage of cement paste characterized by lab source X-ray computer tomography[J]. Materials Characterization, 2013, 82: 32-40. |
16 | Zhou H, Li J, Spencer B F. Multiscale random Fields-based damage modeling and analysis of concrete structures[J]. Journal of Engineering Mechanics, 2019, 145(7): No. 04019045. |
17 | 宋小园,申向东,李红云, 等. 掺矿粉水泥砂浆早期弹性模量的研究[J]. 硅酸盐通报, 2013, 32(10): 2138-2142. |
Song Xiao-yuan, Shen Xiang-dong, Li Hong-yun, et al. Study on early-age elastic modulus of cement mortar with mineral powder dosage[J]. Bulletin of The Chinese Ceramic Society, 2013, 32(10): 2138-2142. | |
18 | 李杰, 张其云. 混凝土随机损伤本构关系[J]. 同济大学学报:自然科学版, 2001(10): 1135-1141. |
Li Jie, Zhang Qi-yun. Study of stochastic damage constitutive relationship for concrete material[J]. Journal of Tongji University, 2001(10): 1135-1141. | |
19 | 李杰, 卢朝辉, 张其云. 混凝土随机损伤本构关系——单轴受压分析[J]. 同济大学学报:自然科学版, 2003(5): 505-509. |
Li Jie, Lu Zhao-hui, Zhang Qi-yun. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress[J]. Journal of Tongji Nniversity, 2003(5): 505-509. | |
20 | 李杰, 任晓丹. 混凝土随机损伤力学研究进展[J]. 建筑结构报, 2014, 35(4): 20-29. |
Li Jie, Ren Xiao-dan. Recent developments on stochastic damage mechanics for concrete[J]. Journal of Building Structures, 2014, 35(4): 20-29. | |
21 | Kandarpa S, Kirkner D J. Stochastic damage model for brittle materiel subjected to monotonic loading[J]. Journal of Engineering Mechanics, 1996,126(8): 788-795. |
22 | 李杰,吴建营, 陈建兵. 混凝土随机损伤力学[M]. 北京:科学出版社, 2014. |
23 | 秦静, 郑德, 裴毅强, 等. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报:工学版, 2022, 52(7): 1489-1498. |
Qin Jing, Zheng De, Pei Yi-qiang, et al. Engine performance and emission prediction method based on PSO-GPR[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(7): 1489-1498. | |
24 | Xue B, Zhang M, Browne W N. Particle swarm optimization for feature selection in classification: a multi-objective approach.[J]. IEEE Trans Cybern, 2013, 43(6): 1656-1671. |
25 | Mohammad K, Mohd R T, Ahmed E S, et al. Modified particle swarm optimization for optimum design of spread footing and retaining wall[J]. Journal of Zhejiang University Science A, 2011, 12(6):3-15. |
[1] | 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855. |
[2] | 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637. |
[3] | 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640. |
[4] | 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593. |
[5] | 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164. |
[6] | 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201. |
[7] | 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724. |
[8] | 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719. |
[9] | 徐虹, 刘亚楠, 于婷, 谷诤巍, 李湘吉, 张志强. 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理[J]. 吉林大学学报(工学版), 2017, 47(1): 191-198. |
[10] | 赵宏伟, 董晓龙, 张霖, 胡晓利. 块体材料弹性模量的四点弯曲自动测试[J]. 吉林大学学报(工学版), 2016, 46(1): 140-145. |
[11] | 孟德建, 张立军, 方明霞, 余卓平. 面向制动踏板感觉的主缸动力学模型及其关键影响因素[J]. 吉林大学学报(工学版), 2015, 45(5): 1388-1394. |
[12] | 姜日花1,白爽1,戴跃2 ,赵梅生3. 瘢痕疙瘩的生物力学特性[J]. 吉林大学学报(工学版), 2011, 41(6): 1675-1677. |
[13] | 于鸣,高青,乔广,李明,马纯强,江彦 . 地能利用中的蓄能时间效应 [J]. 吉林大学学报(工学版), 2009, 39(02): 321-0325. |
[14] | 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1-05. |
[15] | 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(suppl.2): 1-5. |
|