吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 856-864.doi: 10.13229/j.cnki.jdxbgxb20200944

• 交通运输工程·土木工程 • 上一篇    

软土场地大型LNG储罐组合滑移隔震

刘帅(),夏舟,张悦超   

  1. 浙江理工大学 建筑工程学院,杭州 310018
  • 收稿日期:2020-12-09 出版日期:2022-04-01 发布日期:2022-04-20
  • 作者简介:刘帅(1984-),男,副教授,博士. 研究方向:工程结构振动控制.E-mail:sliu_2008@163.com
  • 基金资助:
    国家自然科学基金项目(51808500)

Combined sliding seismic isolation of large LNG storage tank in soft site

Shuai LIU(),Zhou XIA,Yue-chao ZHANG   

  1. School of Civil Engineering and Architecture,Zhejiang Sci?tech University,Hangzhou 310018,China
  • Received:2020-12-09 Online:2022-04-01 Published:2022-04-20

摘要:

针对建设在沿海软土场地上的大型液化天然气(LNG)储罐面临隔震困难的问题,本文提出了一种可复位、耗能、抵抗大变形的新型隔震方案,并研发了相应的带有阻尼器反力墙的组合隔震层。为了验证新型组合滑移隔震方案的控制效果,以外罐壁剪力、脉冲剪力、单桩剪力、晃动波高和隔震层水平变位为主要性能指标,分别对铅芯橡胶支座隔震储罐、复摩擦摆支座隔震储罐和组合隔震储罐在地震作用下的动力响应进行了对比分析。结果表明:在操作基准地震(OBE)作用下,上述3种隔震方案均有明显的隔震效果(晃动波高除外),但在安全停运地震(SSE)作用下,只有组合滑移隔震方案能够承受大震下隔震层产生的较大水平变位,而且组合滑移隔震对LNG储罐晃动波高在OBE及SSE地震作用下均有较好的控制效果。

关键词: 工程结构, 液化天然气储罐, 软土场地, 组合隔震, 地震动, 流固耦合

Abstract:

Liquefied natural gas (LNG) storage tank belongs to urban lifeline project, adopting seismic isolation technology to ensure its seismic safety is the development trend in the future. but the seismic isolation is a problem faced by LNG storage tank built in the coastal soft site. To solve this problem, a new combined sliding isolation scheme, which can be self-centering, energy dissipation and resistance to large deformation is proposed, and a combined isolation layer with damper reaction wall is developed. In order to verify the control effect of the new combined sliding seismic isolation scheme, taking outer tank shearing force, impulse shearing force, single pile shearing force, sloshing wave height and the horizontal displacement of seismic isolation layer as the main performance indicators, the dynamic response of lead rubber bearing isolation tank, friction pendulum isolation tank and combined isolation tank under earthquake were analyzed and compared respectively. The results show that under the action of operating basis earthquake(OBE) earthquake, the above three isolation schemes all have obvious isolation effect (except sloshing wave height), but under the safe shutdown earthquake(SSE) earthquake, only the combined sliding seismic isolation scheme can resist the large horizontal displacement of the isolation layer under large earthquake, and it has better control effect on the sloshing wave height of the LNG storage tank both under OBE and SSE earthquakes.

Key words: engineering structure, liquefied natural gas(LNG)storage tank, soft site, combined seismic isolation, seismic ground motion, fluid structure interaction

中图分类号: 

  • TU352.1

图1

橡胶支座有效受压面积"

图2

天然橡胶支座"

图3

黏滞阻尼器"

图4

滑移支座"

图5

LNG储罐组合隔震层1-滑移支座;2-橡胶支座;3-黏滞阻尼器;4-反力墙;5-桩基;6-罐体底板;7-LNG储罐隔震层;8-罐体;9-不锈钢面板;10-聚四氟乙烯板"

图6

内罐流固耦合力学模型"

图7

组合隔震LNG储罐简化分析模型"

表1

LNG储罐的材料属性"

参 数混凝土9%Ni钢(最小屈服强度为490 MPa)液化天然气

密度/

(kg·m-3

25007850450
弹性模量/MPa3.35×1042×105

2.56×102

(体积模量)

泊松比0.20.3-

表2

LNG储罐集中质量模型的力学参数"

力学参数储液罐各部分
外罐壁储液脉冲储液对流
质量/kg4.457E+073.507E+073.954E+07
刚度/(N·m-17.375E+109.186E+091.582E+07
阻尼/(N·s·m-11.81E+082.27E+072.50E+05
作用点高度/m23.1913.5319.47

图8

地震动时程及反应谱"

表3

LNG储罐地震响应分析结果"

工况指标ST0ST1ST2ST3
OBE外罐壁剪力1.96E+085.80E+075.89E+075.30E+07
脉冲剪力1.73E+085.14E+075.14E+074.96E+07
对流剪力2.65E+072.34E+072.33E+072.03E+07
单桩剪力7.97E+052.41E+052.07E+058.11E+04
波高1.121.000.980.86
隔震层位移0.1290.1160.146
SSE外罐壁剪力4.11E+081.23E+081.19E+086.19E+07
脉冲剪力3.63E+089.67E+079.95E+075.22E+07
对流剪力5.57E+075.08E+075.11E+074.42E+07
单桩剪力1.68E+065.78E+055.67E+058.11E+04
波高2.362.142.151.80
隔震层位移0.4320.4500.484

图9

LNG储罐地震响应分析结果"

图10

隔震装置滞回曲线(总体)"

1 Christovasilis I P, Whittaker A S. Seismic analysis of conventional and isolated LNG tanks using mechanical analogs[J]. Earthquake Spectra, 2008, 24(3): 599-616.
2 Curadelli O. Equivalent linear stochastic seismic analysis of cylindrical base-isolated liquid storage tanks [J]. Journal of Constructional Steel Research, 2013, 83: 166-176.
3 Uckan E, Akbas B, Paolacci F, et al. Earthquake protection of liquid storage tanks by sliding isolation bearings[C]∥ASME Pressure Vessels Piping Div Publ, Boston, StatesUnited, 2015.
4 孙建刚, 周抚生, 郝进锋. 立式储液罐橡胶基底隔震模型实验研究[J]. 地震工程与工程振动, 1999, 19(3): 136-142.
Sun Jian-gang, Zhou Fu-sheng, Hao Jin-feng. Test study of base rubber isolation model for vertical fluid-storage tank[J]. Earthquake Engineering and Engineering Dynamics, 1999, 19(3): 136-142.
5 孙建刚, 王振, 袁朝庆. 储罐隔震设计简化分析方法[J]. 地震工程与工程振动, 2001, 21(2): 157-160.
Sun Jian-gang, Wang Zhen, Yuan Zhao-qing. A simple method of single degree of freedom system for storage tank isolation design[J]. Earthquake Engineering and Engineering Dynamics, 2001, 21(2): 157-160.
6 孙建刚, 郑建华, 崔利富, 等. LNG储罐基础隔震反应谱设计[J]. 哈尔滨工业大学学报, 2013, 45(4): 105-109.
Sun Jian-gang, Zheng Jian-hua, Cui Li-fu, et al. Base isolation response spectrum design of LNG storage tank[J]. Journal of Harbin Institute of Technology, 2013, 45(4): 105-109.
7 张瑞甫, 翁大根, 倪伟波, 等. 基于阻尼器反力墙体系的特大型LNG储罐控制研究[J]. 防灾减灾工程学报, 2011, 31(2):138-145.
Zhang Rui-fu, Weng Da-gen, Ni Wei-bo, et al. Study on seismic control of large-scale LNG storage tank based on damper reaction wall isolation system[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(2): 138-145.
8 Zhang R, Weng D, Ren S. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system[J]. Earthquake Engineering and Engineering Vibration, 2011, 10(2): 253-262.
9 赵长军. LNG储罐滚动自复位隔震研究[D]. 大庆: 东北石油大学土木建筑学院, 2011.
Zhao Chang-jun. Research on base isolation of LNG storage tanks with resilience rolling isolator[D]. Daqing: School of Civil Engineering and Architecture,Northeast Petroleum University, 2011.
10 李想, 郝进锋, 孙建刚, 等. 立式储罐环梁滚动隔震装置力学性能分析[J]. 地震工程与工程振动, 2014, 34(1): 249-256.
Li Xiang, Hao Jin-feng, Sun Jian-gang, et al. Mechanical property and isolation effect analysis of vertical storage tank with rolling ring beam isolation device[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1): 249-256.
11 崔利富, 孙建刚, 李想, 等. 立式储罐钢筋环梁基础隔震模拟振动台试验研究[J]. 地震工程与工程振动, 2016, 36(4): 130-138.
Cui Li-fu, Sun Jian-gang, Li Xiang, et al. Simulation shaking table test of vertical storage tank with reinforcement ring beam base isolation[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4): 130-138.
12 刘帅. 储液罐晃动响应的被动控制方法研究[J]. 噪声与振动控制, 2019, 39(2): 47-52.
Liu Shuai. Study on the passive method for controlling liquid sloshing in storage tanks[J]. Noise and Vibration Control, 2019, 39(2): 47-52.
13 Malhotra P K. Method for seismic base isolation of liquid-storage tanks[J]. Journal of Structural Engineering, 1997, 123(1): 113-116.
14 翁大根, 卢著辉, 徐斌, 等. 黏滞阻尼器力学性能试验研究[J]. 世界地震工程, 2002, 18(4): 30-34.
Weng Da-gen, Lu Zhu-hui, Xu Bin, et al. The experimental study on property of energy dissipation of viscous liquid damper[J]. World Earthquake Engineering, 2002, 18(4): 30-34.
15 Chopra Anil K. 结构动力学:理论及其在地震工程中的应用[M]. 谢礼立, 吕大刚译. 北京:高等教育出版社, 2007.
16 Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound and Vibration, 1999, 225(5): 935-988.
17 . 建筑抗震设计规范 [S].
18 潘超, 张瑞甫. EQSignal: 地震波处理与生成工具[CP/OL]. [2020-03-03]..
19 Pan C, Zhang R, Luo H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2018, 24(12): 2562-2575.
20 刘帅, 潘超, 周志光. 对人造地震动反应谱求解及拟合的几个相关问题探讨[J]. 地震学报, 2018, 40(4): 519-530.
Liu Shuai, Pan Chao, Zhou Zhi-guang. Discussions on the response spectral solution and fitting of spectrum-compatible artificial seismic waves[J]. Acta Seismologica Sinica, 2018, 40(4): 519-530.
[1] 姚宗伟,高旭东,刘刚,毕秋实. 基于数值仿真的大型塔式磨机工作特性分析[J]. 吉林大学学报(工学版), 2021, 51(5): 1642-1650.
[2] 李卫,张怀亮,瞿维. 随机振动环境下液压直管道设计方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1222-1229.
[3] 王秀振,钱永久,邵长江,宋帅. 考虑楼层相关性的框架结构地震易损性分析[J]. 吉林大学学报(工学版), 2020, 50(1): 202-209.
[4] 胡兴军,惠政,郭鹏,张扬辉,张靖龙,王靖宇,刘飞. 基于流固耦合的汽车气动特性[J]. 吉林大学学报(工学版), 2019, 49(5): 1414-1419.
[5] 王靖宇, 于旭涛, 胡兴军, 郭鹏, 辛俐, 郭峰, 张扬辉. 汽车外后视镜流致振特性及其流动机理[J]. 吉林大学学报(工学版), 2017, 47(6): 1669-1676.
[6] 袁哲, 徐东, 刘春宝, 李雪松, 李世超. 基于热流固耦合过程的液力缓速器叶片强度分析[J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[7] 齐龙, 梁仲维, 蒋郁, 马旭, 武涛, 芦玉龙, 赵柳霖. 轻型水田除草机的设计及试验[J]. 吉林大学学报(工学版), 2016, 46(3): 1004-1012.
[8] 杨一洋, 许男, 郭孔辉, 陈平. 轮胎滑水机理在钢带式高速轮胎试验台上的应用[J]. 吉林大学学报(工学版), 2016, 46(1): 1-7.
[9] 姜封国, 赵景鲁, 郑重远. 基于荷载抗力设计法的受火钢柱可靠性分析[J]. 吉林大学学报(工学版), 2014, 44(4): 978-984.
[10] 张立业, 郭学东, 董丽娟. 载荷共享过程的桥梁系统首次失效平均时间[J]. 吉林大学学报(工学版), 2013, 43(05): 1247-1252.
[11] 谭越, 马文星, 卢秀泉. 基于流固耦合的冲焊型液力变矩器焊接强度分析[J]. 吉林大学学报(工学版), 2013, 43(04): 928-932.
[12] 郭学东, 张立业, 董丽娟, 吴云涛, 张强. 桥梁系统可靠性评估方法 [J]. , 2012, (03): 634-638.
[13] 闫清东, 崔红伟, 魏巍. 新型液力变矩减速装置变矩工况叶轮有限元强度分析[J]. 吉林大学学报(工学版), 2012, 42(02): 365-371.
[14] 姜浩, 郭学东, 张立业. 基于模态应变能理论的混凝土结构损伤诊断[J]. 吉林大学学报(工学版), 2010, 40(增刊): 209-0213.
[15] 潘明远, 姚继涛. 钢筋混凝土结构构件的可靠性[J]. 吉林大学学报(工学版), 2010, 40(增刊): 218-0221.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!