吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3406-3416.doi: 10.13229/j.cnki.jdxbgxb.20230063

• 通信与控制工程 • 上一篇    

DoS攻击下网联车队安全协同自适应预测巡航控制

宋秀兰(),柴伟豪,何德峰,应颂翔   

  1. 浙江工业大学 信息工程学院,杭州 310023
  • 收稿日期:2023-01-20 出版日期:2024-11-01 发布日期:2025-04-24
  • 作者简介:宋秀兰(1982-),女,副教授,博士. 研究方向:网联车队安全控制. E-mail: songxl2008@zjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(62273307);浙江省公益性技术应用研究项目(LGF22F030013)

Security-oriented cooperative adaptive predictive cruise control for connected and automated vehicular platoons under DoS attacks

Xiu-lan SONG(),Wei-hao CHAI,De-feng HE,Song-xiang YING   

  1. College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China
  • Received:2023-01-20 Online:2024-11-01 Published:2025-04-24

摘要:

针对受约束网联车队受到加速度拒绝服务(DoS)攻击的情况,提出一种新的安全协同自适应预测巡航控制算法。首先,结合运动学特征设计加速度估计器以缓解DoS攻击对巡航控制器的影响,再设计特定的综合轨迹信号以灵活表示网联车队的各种交通工况。其次,采用滚动时域优化原理和分布式模型预测控制(MPC)框架,提出满足安全约束的车辆队列安全协同自适应预测巡航控制策略。在此基础上,采用线性矩阵不等式方法,给出在安全约束和加速度DoS攻击下的队列稳定性和弦稳定性的充分条件。最后,通过典型交通场景仿真验证本文算法的有效性。

关键词: 控制科学与工程, 协同自适应巡航控制, 模型预测控制, 安全控制, 拒绝服务攻击

Abstract:

A new security-oriented cooperative adaptive predictive cruise control (CAPCC) algorithm is presented for connected and automated vehicle (CAV) platoons subject to constraints and Denial of Service (DoS) attacks of predecessors' acceleration. Firstly, using the kinematic characteristics, the acceleration estimator is designed to alleviate the effect of DoS attacks on cruise controllers. Then the synthetical trajectory signals are designed to flexibly represent various traffic situations of CAV platoons. Secondly, by adopting the receding horizon optimization principle, the secure CAPCC scheme of the vehicle platoon with satisfactions of the safety constraints is formulated in the framework of distributed model predictive control. Moreover, some sufficient conditions in the form of linear matrix inequalities are obtained to ensure stability and string stability of the platoon in the presence of safety constraints and the acceleration DoS attacks. Finally, some simulation experiments in representative traffic scenarios verify the effectiveness of the presented algorithm.

Key words: control science and engineering, collaborative adaptive cruise control, model predictive control, security control, denial of service attack

中图分类号: 

  • TP273

图1

车辆CACC队列示意图"

图2

DoS攻击下的车辆队列"

表1

参数设置"

参数
初始速度 vi(0)i=0,1,2,3,4)/(m·s-115
初始加速度 ai0i=0,1,2,3,4)/(m·s-20
车头时距 hii=1,2,3,4)/s1.0
采样间隔 Ts /s0.1
DoS攻击周期 T/s5.0
控制约束 u?/(m·s-25
性能约束δ/m5
安全距离 rii=1,2,3,4)2.0
松弛因子β0.6

图3

真实加速度"

图4

DoS攻击后的加速度"

图5

补偿后的加速度"

图6

DoS攻击下的车辆速度、加速度和车间距曲线"

图7

安全CACC算法下的车辆速度、加速度和车间距曲线"

图8

DoS攻击下弦稳定性分析"

1 Dey K C, Yan L, Wang X, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control(CACC)[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 491-509.
2 林亨,方华建,吴冬雁. 基于动态安全距离的CACC车辆混合交通流模型[J]. 北京交通大学学报, 2022, 46(6): 36-42.
Lin Heng, Fang Hua-jian, Wu Dong-yan. CACC vehicle mixed traffic flow model based on dynamic safety distance[J]. Journal of Beijing Jiaotong University, 2022, 46(6): 36-42.
3 Ghasemi A, Kazemi R, Azadi S. Stable decentralized control of a platoon of vehicles with heterogeneous information feedback[J]. IEEE Transactions on Vehicle Technology, 2013, 62(9): 4299-4308.
4 Firooznia A, Ploeg J, Wouw N, et al. Co-design of controller and communication topology for vehicular platooning[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2728-2739.
5 田彬, 姚柯, 王孜健, 等. 基于模型预测控制的CACC系统通信延时补偿方法[J]. 交通运输工程学报, 2022, 22(4): 361-381.
Tian Bin, Yao Ke, Wang Zi-jian, et al. Communication delay compensation method of CACC platooning system based on model predictive control[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 361-381.
6 Zabat M, Stabile N, Farascaroli S, et al. The aerodynamic performance of platoons: a final report[R]. Lafayette: Path Research Report, 1995.
7 Kenney J B. Dedicated short-range communications (DSRC) standards in the united states[J]. Proceedings of the IEEE, 2011, 99(7): 1162-1182.
8 Wang D, Sattiraju R, Qiu A, et al. Effect of retransmissions on the performance of C-V2X communication for 5G[C]∥ 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, Canada, 2020: 1-7.
9 Öncü S, Ploeg J, Wouw N, et al. Cooperative adaptive cruise control: network-aware analysis of string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1527-1537.
10 Hu S L, Yue D, Han Q L, et al. Observer-based event-triggered control for networked linear systems subject to denial-of-service attacks[J]. IEEE Transactions on Cybernetics, 2020, 50(5): 1952-1964.
11 Malik S, Sun W. Analysis and simulation of cyber attacks against connected and autonomous vehicles[C]∥ 2020 International Conference on Connected and Autonomous Driving (MetroCAD), Detroit, USA, 2020: 62-70.
12 Singh P K, Tabjul G S, Imran M, et al. Impact of security attacks on cooperative driving use case: CACC platooning[C]∥ TENCON 2018 - 2018 IEEE Region 10 Conference, Jeju, Korea (South), 2018: 138-143.
13 Alipour F A, Dabaghchian M, Zeng K. Impact of jamming attacks on vehicular cooperative adaptive cruise control systems[J]. IEEE Transactions on Vehicle Technology, 2020, 69(11): 12679-12693.
14 Biron Z A, Dey S, Pisu P. Real-time detection and estimation of denial of service attack in connected vehicle systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 3893-3902.
15 Zhang X F, Du H P, Wei J M, et al. High gain observer design for DOS attack detection in CACC platoon[C]∥ 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 2020: 254-259.
16 Alotibi F, Abdelhakim M. Anomaly detection for cooperative adaptive cruise control in autonomous vehicles using statistical learning and kinematic model[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3468-3478.
17 Wyk F, Wang Y, Khojandi A, et al. Real-time sensor anomaly detection and identification in automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1264-1276.
18 Arfouch Y A, Yuan S, Baldi S. An adaptive switched control approach to heterogeneous platooning with intervehicle communication losses[J]. IEEE Transactions on Control of Network Systems, 2018, 5(3): 1434-1444.
19 Mousavinejad E, Yang F, Han Q, et al. Distributed cyber attacks detection and recovery mechanism for vehicle platooning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3821-3834.
20 Ge X H, Yang F W, Han Q L. Distributed networked control systems: a brief overview[J]. Information Sciences, 2017, 380: 117-131.
21 Segata M, Bloessl B, Joerer S, et al. Toward communication strategies for platooning: simulative and experimental evaluation[J]. IEEE Transactions on Vehicle Technology, 2015, 64(12): 5411-5423.
22 Liu X, Goldsmith A, Mahal S, et al. Effects of communication delay on string stability in vehicle platoons[C]∥ 2001 IEEE Intelligent Transportation Systems, Oakland, USA, 2001: 625-630.
23 Ploeg J, Scheepers B T, Nunen E, et al. Design and experimental evaluation of cooperative adaptive cruise control[C]∥ 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, USA, 2011: 260-265.
24 Naus G J, Vugts R P, Ploeg J, et al. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicle Technology, 2010, 59(9): 4268-4279.
25 Benslimane A, Huong N. Jamming attack model and detection method for beacons under multichannel operation in vehicular networks[J]. IEEE Transactions on Vehicle Technology, 2017, 66(7): 6475-6488.
26 Dutta R G, Hu Y, Yu F, et al. Design and analysis of secure distributed estimator for vehicular platooning in adversarial environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3418-3429.
27 Liu Y, Pan C, Gao H, et al. Cooperative spacing control for interconnected vehicle systems with input delays[J]. IEEE Transactions on Vehicle Technology, 2017, 66(12): 10692-10704.
28 Bernardo M, Falcone P, Salvi A, et al. Design, analysis, and experimental validation of a distributed protocol for platooning in the presence of time-varying heterogeneous delays[J]. IEEE Transactions on Control Systems Technology, 2016, 24(2): 413-427.
29 Dumitrescu B. Bounded real lemma for FIR MIMO systems[J]. IEEE Signal Processing Letters, 2005, 12(7): 496-499.
30 He Y, Wu M, She J H. Improved bounded-real-lemma representation and H control of systems with polytopic uncertainties[J]. IEEE Transactions on Circuits and Systems II-Express Briefs, 2005, 52(7): 380-383.
31 Feng L, Wang J, Poh E, et al. Multi-objective robust model predictive control: trajectory tracking problem through LMI formulation[C]∥ American Control Conference, New York, USA, 2007: 5589-5594.
32 Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
33 Luo J, He D F, Zhu W, et al. Multiobjective platooning of connected and automated and vehicles using distributed economic model predictive control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19121-19135.
34 Zhu Y H, He H B, Zhao D B. LMI-based synthesis of string-stable controller for cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4516-4525.
[1] 李寿涛,杨路,屈如意,孙鹏鹏,于丁力. 基于模型预测控制的滑移率控制方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2687-2696.
[2] 郭洪艳,张家铭,刘俊,胡云峰. 面向智能汽车-行人交互的虚拟测试场景构建[J]. 吉林大学学报(工学版), 2024, 54(9): 2511-2519.
[3] 鲜斌,王印鑫,王岭. 无人机集群分布式跟踪抗扰控制设计与实验验证[J]. 吉林大学学报(工学版), 2024, 54(7): 2093-2103.
[4] 赵靖华,张雨彤,曹派,王忠恕,李小平,孙亚南,解方喜. 压缩天然气发动机增程式电动汽车能量管理优化[J]. 吉林大学学报(工学版), 2024, 54(3): 600-609.
[5] 李文航,倪涛,赵丁选,邓英杰,师小波. 基于模型预测反馈技术的救援车辆液压悬挂系统控制方法[J]. 吉林大学学报(工学版), 2024, 54(3): 610-619.
[6] 江和耀,王永海,吴幼冬,王萍. 四轮毂驱动电动车辆横向稳定与侧倾预防协同控制策略[J]. 吉林大学学报(工学版), 2024, 54(2): 540-549.
[7] 刘果,熊坚,杨秀建,何扬帆. 基于曲率增广的智能车辆轨迹跟踪控制[J]. 吉林大学学报(工学版), 2024, 54(12): 3717-3728.
[8] 刘刚,范群,杨旭,任宏斌. 无人驾驶汽车变速换道轨迹跟踪动态控制[J]. 吉林大学学报(工学版), 2024, 54(12): 3729-3739.
[9] 蒋渊德,欧阳铭,赵祥模,秦孔建,郑兵兵. 车辆纵侧向辅助驾驶集成优化控制策略[J]. 吉林大学学报(工学版), 2024, 54(10): 2741-2753.
[10] 李寿涛,李嘉霖,孟庆瑜,郭洪艳. 基于点云直方图的回环检测算法和车辆定位方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2395-2403.
[11] 申富媛,李炜,蒋栋年. 四旋翼无人机寿命预测和自主维护方法[J]. 吉林大学学报(工学版), 2023, 53(3): 841-852.
[12] 何德峰,周丹,罗捷. 跟随式车辆队列高效协同弦稳定预测控制[J]. 吉林大学学报(工学版), 2023, 53(3): 726-734.
[13] 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725.
[14] 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643-652.
[15] 孙耀,胡云峰,周杰敏,程欢,曲婷,赵靖华,陈虹. 基于分层控制器的SCR系统滚动时域优化控制方法[J]. 吉林大学学报(工学版), 2023, 53(1): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!