吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3653-3659.doi: 10.13229/j.cnki.jdxbgxb.20230130
Yu-ting SU(
),Meng-yao JING,Pei-guang JING(
),Xian-yi LIU
摘要:
针对电池缺陷检测易受黑色外观干扰,导致仅通过一张单光源下观测图像的局限视觉,无法实现缺陷的有效识别的问题,提出了一种端到端的光度立体视觉缺陷检测模型。首先,利用光度立体特征生成模块生成法线特征,获取物体表面细节信息;然后,采用通道协同注意力机制,探讨特征信道间的相互关系,充分挖掘特征间的关联以自适应地增强全局表示,进一步提升信息表达能力;最后,利用特征金字塔和空间金字塔池化实现多尺度预测,提升分类准确率。在自建Battery 101数据集上的实验结果表明:与其他算法相比,本文算法在检测精度和推理速度上都取得较好效果。此外,消融实验也进一步验证了模型中各个模块的有效性。
中图分类号:
| 1 | Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. |
| 2 | Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886-893. |
| 3 | 时亚涛,戴芳,杨畅民. 太阳能光伏电池缺陷检测[J]. 电子测量与仪器学报,2020,34(4):157-164. |
| Shi Ya-tao, Dai Fang, Yang Chang-min. Defect detection in solar photovoltaic cells[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(4): 157-164. | |
| 4 | 刘磊,王冲,赵树旺,等. 基于机器视觉的太阳能电池片缺陷检测技术的研究[J]. 电子测量与仪器学报,2018,32(10):47-52. |
| Liu Lei, Wang Chong, Zhao Shu-wang, et al. Research on machine vision-based defect detection technology for solar cells[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(10): 47-52. | |
| 5 | Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]∥Proceedings of the European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21-37. |
| 6 | Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7263-7271. |
| 7 | Redmon J, Farhadi A. YOLOv3: an incremental improvement[DB/OL]. [2023-01-08]. . |
| 8 | Girshick R. Fast R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440-1448. |
| 9 | Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149. |
| 10 | He K, Gkioxari G, Dollar P, et al. Mask R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2961-2969. |
| 11 | 郝刚, 金涛. 基于多尺度数据融合的锂电池健康状态评估[J]. 江苏大学学报: 自然科学版, 2023, 44(5): 524-529. |
| Hao Gang, Jin Tao. Lithium battery health evaluation based on multi-scale data fusion[J]. Journal of Jiangsu University (Natural Science Edition), 2023, 44(5): 524-529. | |
| 12 | 桂久琪,李林升,毛晓,等. 基于改进YOLOv4的锂电池缺陷检测方法[J]. 电子测量技术,2022,45(15):144-150. |
| Gui Jiu-qi, Li Lin-sheng, Mao Xiao, et al. An improved YOLOv4-based defect detection method for lithium batteries[J]. Electronic Measurement Technology, 2022, 45(15): 144-150. | |
| 13 | Liu L, Zhu Y, Rahman M R U, et al. Surface defect detection of solar cells based on feature pyramid network and GA-Faster-RCNN[C]∥Proceedings of the 2nd China Symposium on Cognitive Computing and Hybrid Intelligence, Xi'an, China, 2019: 292-297. |
| 14 | Silver W M. Determining shape and reflectance using multiple images[M]. Massachusetts: Massachusetts Institute of Technology, 1980. |
| 15 | Woodham R J. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 1980, 19(1): 139-144. |
| 16 | Mukaigawa Y, Ishii Y, Shakunaga T. Analysis of photometric factors based on photometiric linearization[J]. Optical Society, 2007, 24(10): 3326-3334. |
| 17 | Wu L, Ganesh A, Shi B, et al. Robust photometric stereo via low-rank matrix completion and recovery[C]∥Proceedings of the 10th Asian Conference on Computer Vision, Queenstown, New Zealand, 2010: 703-717. |
| 18 | Ikehata S, Wipf D, Matsushita Y, et al. Robust photometric stereo using sparse regression[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 318-325. |
| 19 | Torrance K E, Sparrow E M. Theory for off-specular reflection from roughened surfaces[J]. Optical Society, 1967, 57: 1105-1114. |
| 20 | Chung H S, Jia J. Efficient photometric stereo on glossy surfaces with wide specular lobes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: No.4587771. |
| 21 | Cook R L, Torrance K E. A reflectance model for computer graphics[J]. ACM Transactions on Graphics, 1988, 1(1): 7-24. |
| 22 | Santo H, Samejima M, Sugano Y, et al. Deep photometric stereo network[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 501-509. |
| 23 | Chen G, Han K, Shi B, et al. Deep photometric stereo for non-lambertian surfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 129-142. |
| 24 | 刘根,蔡念,肖盼,等. 基于光度立体和图像显著性的皮革缺陷检测[J]. 计算机工程与应用,2019,55(8):215-219. |
| Liu Gen, Cai Nian, Xiao Pan, et al. Leather defect detection based on photometric stereo and image saliency[J]. Computer Engineering and Applications, 2019, 55(8): 215-219. | |
| 25 | Cao Y, Ding B, Chen J, et al. Photometric stereo-based defect detection system for metal parts[J]. Sensors, 2022, 22(21): No.8374. |
| 26 | He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. |
| 27 | Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2117-2125. |
| 28 | Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context[C]∥Proceedings of the European Conference on Computer Vision(ECCV), Zurich, Switzerland, 2014: 740-755. |
| 29 | Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988. |
| 30 | Nguyen C H, Nguyen T C, Tang T N, et al. Improving object detection by label assignment distillation[C]∥Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision(WACV), Waikoloa, USA, 2022: 1005-1014. |
| 31 | Ge Z, Liu S, Wang F, et al. YOLOX: exceeding YOLO series in 2021[DB/OL]. [2023-01-15]. |
| 32 | Zhang H, Wang Y, Dayoub F, et al. VarifocalNet: an IoU-aware dense object Detector[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 2021: 8510-8519. |
| 33 | Zheng Z H, Ye R G, Hou Q B, et al. Localization distillation for dense object detection[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9407-9416. |
| 34 | Cheng B, Misra I, Schwing A G, et al. Masked-attention Mask transformer for universal image segmentation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1290-1299. |
| [1] | 王海涛,刘慧卓,张学永,韦健,郭校源,肖俊哲. 基于单目视觉的车辆屏显式封闭驾驶舱前视视野重现[J]. 吉林大学学报(工学版), 2024, 54(5): 1435-1442. |
| [2] | 窦慧晶,谢东旭,郭威,邢路阳. 基于改进的正交匹配跟踪算法的波达方向估计[J]. 吉林大学学报(工学版), 2024, 54(12): 3568-3576. |
| [3] | 王春阳,丘文乾,刘雪莲,肖博,施春皓. 基于平面拟合的地面点云精确分割方法[J]. 吉林大学学报(工学版), 2023, 53(3): 933-940. |
| [4] | 李雪梅,王春阳,刘雪莲,施春浩,李国瑞. 基于超体素双向最近邻距离比的点云配准方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1918-1925. |
| [5] | 李雪梅,王春阳,刘雪莲,谢达. 基于SESTH的线性调频连续波激光雷达信号时延估计[J]. 吉林大学学报(工学版), 2022, 52(4): 950-958. |
| [6] | 林乐平,卢增通,欧阳宁. 面向非配合场景的人脸重建及识别方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2941-2946. |
| [7] | 窦慧晶,丁钢,高佳,梁霄. 基于压缩感知理论的宽带信号波达方向估计[J]. 吉林大学学报(工学版), 2021, 51(6): 2237-2245. |
| [8] | 金心宇,谢慕寒,孙斌. 基于半张量积压缩感知的粮情信息采集[J]. 吉林大学学报(工学版), 2021, 51(1): 379-385. |
| [9] | 郭立民,陈鑫,陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报(工学版), 2019, 49(3): 1000-1008. |
| [10] | 林欣堂, 李艳东, 吴攀超. 新的闭式通用浮雕变换解算法在三维表面检测中的应用[J]. 吉林大学学报(工学版), 2015, 45(6): 1987-1993. |
|