吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3660-3672.doi: 10.13229/j.cnki.jdxbgxb.20230847

• 通信与控制工程 • 上一篇    下一篇

基于约束优化的自适应衰减记忆平方根混合阶容积粒子滤波在惯性/卫星组合导航中的应用

王宁(),刘繁明()   

  1. 哈尔滨工程大学 智能科学与工程学院,哈尔滨 150001
  • 收稿日期:2023-07-27 出版日期:2024-12-01 发布日期:2025-01-24
  • 通讯作者: 刘繁明 E-mail:jerry_wn@hrbeu.edu.cn;hrblfm_407@163.com
  • 作者简介:王宁(1980-),男,博士研究生.研究方向:组合导航、制导与控制、精密仪器及机械.E-mail:jerry_wn@hrbeu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61633008)

Application of constrained optimization⁃based adaptive fading memory square root mixed⁃order cubature particle filtering in SINS/GNSS integrated navigation

Ning WANG(),Fan-ming LIU()   

  1. College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2023-07-27 Online:2024-12-01 Published:2025-01-24
  • Contact: Fan-ming LIU E-mail:jerry_wn@hrbeu.edu.cn;hrblfm_407@163.com

摘要:

针对粒子滤波中粒子退化和重要性密度函数选择难题,本文提出一种基于约束优化的自适应衰减记忆平方根混合阶球面单纯形-径向容积粒子滤波算法。该算法结合约束优化、自适应衰减记忆、平方根滤波和混合阶球面单纯形-径向容积卡尔曼滤波的优势,通过混合阶球面单纯形-径向容积准则采样,算法在精度上优于传统的容积卡尔曼滤波,计算复杂度低于高阶容积卡尔曼滤波。自适应衰减记忆平方根策略用于预测和更新协方差矩阵,增强当前量测信息权重,减弱历史信息影响,避免协方差矩阵的不对称性、负定性和滤波发散问题。算法动态调整噪声协方差矩阵,并通过约束误差协方差与测量噪声协方差比值,提高状态估计收敛速度和精度。仿真结果表明,基于约束优化的自适应衰减记忆平方根混合阶球面单纯形-径向容积粒子滤波算法在SINS/GNSS组合导航系统中能有效抑制滤波发散,与衰减记忆容积粒子滤波和传统容积粒子滤波算法相比,显著提高滤波精度和鲁棒性。

关键词: 组合导航定位, 约束优化, 自适应衰减记忆, 平方根滤波, 混合阶, 球面单纯形-径向容积卡尔曼滤波, 粒子滤波

Abstract:

To address the issues of particle degradation and the difficulty in selecting the importance density function in particle filtering, a Constrained Optimization-Based Adaptive Fading Memory Square Root Mixed-Degree Spherical Simplex-Radial Cubature Particle Filter (COAFM-MSSRCPF) algorithm was proposed. The advantages of constrained optimization, adaptive fading memory, square root filtering, and Mixed-Degree Spherical Simplex-Radial Cubature Kalman Filtering (MSSRCKF) are combined in this algorithm. By employing the Mixed-Degree Spherical Simplex-Radial sampling criterion, higher accuracy compared to traditional Cubature Kalman Filtering (CKF) and lower computational complexity than High-Degree Cubature Kalman Filtering (HCKF) are achieved. The adaptive fading memory square root strategy is utilized for predicting and updating the covariance matrix, with the weight of current measurement information being enhanced and the influence of historical data reduced. As a result, issues of covariance matrix asymmetry, negative definiteness, and filter divergence are avoided. The noise covariance matrix is dynamically adjusted, and the convergence speed and accuracy of state estimation are improved by constraining the ratio of error covariance to measurement noise covariance. Simulation results demonstrate that the COAFM-MSSRCPF algorithm effectively suppresses filter divergence in SINS/GNSS integrated navigation systems. Filtering accuracy and robustness are significantly improved compared to the Fading Memory Cubature Particle Filtering (FMCPF) and traditional Cubature Particle Filtering (CPF) algorithms.

Key words: integrated navigation positioning, constrained optimization, adaptive fading memory, square root filtering, mixed-degree, spherical simplex-radial cubature kalman filtering, particle filtering

中图分类号: 

  • TP2

图1

紧组合导航模式"

图2

COAFM-MSSRCKF滤波算法流程图"

图3

不同α值下的状态估计误差"

图4

COAFM-MSSRCPF算法流程图"

表1

三种滤波算法采样点数和仿真时间"

算法(n=17)采样点数平均仿真时间/s
CKF2n77.36
HCKF2n2+1992.15
MSSRCKF2n+379.68

图5

飞行器运动轨迹"

图6

SINS未校正的陀螺零偏"

图7

SINS未校正的加速度计零偏"

图8

MSSRCKF滤波校正后的SINS陀螺零偏"

图9

MSSRCKF滤波校正后的SINS加速度计零偏"

图10

纬度位置误差"

图11

经度位置误差"

图12

纬度位置误差"

图13

经度位置误差"

图14

高度位置误差"

表2

纬度、经度、高度定位误差对比"

滤波算法仿真时间/s最大纬度误差/m最大经度误差/m最大高度误差/m
COAFM-MSSRCPF600~1 2002.502.463.20
FMCPF600~1 2004.605.106.00
CPF600~1 2007.208.009.60
1 Zhao X, Li jian-li, Yan Xun-liang,et al. Robust adaptive cubature Kalman filter and its application to ultra-tightly coupled SINS/GPS navigation system[J]. Sensors, 2018, 18(7): No.2352.
2 Li L, Wang J, Chen Z, et al. Application of adaptive robust Kalman filter based on MCC for SINS/GPS integrated navigation[J]. Sensors, 2023, 23(19): No.8131.
3 Wang Lian-sheng, Xia Yuan-qing. Mars entry navigation with uncertain parameters based on desensitized extended Kalman filter[J]. IEEE Transactions on Industrial Informatics, 2015, 11(5): 998-1005.
4 Li D, Ji D, Liu J, et al. A multi-model EKF integrated navigation algorithm for deep water AUV[J]. Int J Adv Robot Syst, 2016, 13(1): 3.
5 Yazdkhasti S, Sasiadek J Z, Ulrich S. Performance enhancement for GPS/INS fusion by using a fuzzy adaptive unscented Kalman filter[C]∥Proceedings of the 21st International Conference on Methods and Models in Automation and Robotics (MMAR),Miedzyzdroje, Poland, 2016: 1194-1199.
6 Li K L, Chang L B, Hu B Q,et al. A variational Bayesian-based unscented Kalman filter with both adaptivity and robustness[J]. : IEEE Sensors Journal, 2016, 16(18): 6966-6976.
7 Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans Autom Control, 2009, 54(6): 1254-1269.
8 Xu B, Zhang P, Wen H, et al. Stochastic stability and performance analysis of cubature Kalman filter[J]. Neurocomputing, 2016, 186: 218-227.
9 Chandra B P K, Gu D, Postlethwaite I. Square root cubature information filter[J]. IEEE Sens J, 2013, 13(2): 750-758.
10 Wang D, Lv H, Wu J. Augmented cubature Kalman filter for nonlinear RTK/MIMU integrated navigation with non-additive noise[J]. Measurement, 2017, 97: 111-125.
11 Cui Bing-bo, Chen Xi-yuan, Tang Xin-hua. Improved cubature Kalman filter for GNSS/INS based on transformation of posterior sigma-points error[J]. IEEE Trans Signal Process, 2017, 65(11): 2975-2987.
12 Jiang C, Chen S, Bo Y, et al. Performance improvement of GPS/SINS ultra-tightly integrated navigation system utilizing a robust cubature Kalman filter[J]. J Aeronaut Astronaut Aviat, 2017, 49(1): 49-55.
13 Benzerrouk H, Nebylov A. Robust nonlinear filtering applied to integrated navigation system INS/GNSS under non-Gaussian measurement noise effect[J]. IFAC Proc Vol, 2012, 45(1): 202-207.
14 Jia Bin, Xin Ming, Cheng Yang.High-degree cubature Kalman filter[J].Automatica, 2013, 49(2): 510-518.
15 Cui Bing-bo, Wei Xin-hua, Chen Xi-yuan, et al. Improved high-degree cubature Kalman filter based on resampling-free sigma-point update framework and its application for inertial navigation system-based integrated navigation[J]. Aerosp Sci Technol, 2021(117): No.106905.
16 郝顺义, 卢航, 魏翔, 等. 简化高阶强跟踪容积卡尔曼滤波及其在组合导航中的应用[J]. 控制与决策, 2019, 34(10): 2105-2114.
Hao, Shun-yi, Lu Hang, Wei Xiang, et al. Simplified high-order strong tracking cubature kalman filter and its application in integrated navigation[J]. Control and Decision, 2019, 34(10): 2105-2114.
17 Quan L, Chang R, Guo C. Vehicle state and road adhesion coefficient joint estimation based on high-order cubature Kalman algorithm[J]. Applied Sciences, 2023, 13(19): No.10734.
18 Wang S, Feng Y, Duan S, et al. Spherical simplex-radial cubature Kalman filter[J]. IEEE Signal Process Lett, 2014, 21(4): 405-408.
19 Cui B, Wei X, Chen X, et al. Improved high-degree cubature Kalman filter based on resampling-free sigma-point update framework and its application for inertial navigation system-based integrated navigation[J]. Aerosp Sci Technol, 2021, 117(3): No.106905.
20 徐晓苏, 董亚, 童金武, 等.基于5阶球面最简相径的改进型容积卡尔曼滤波在SINS/DVL组合导航中的应用[J]. 中国惯性技术学报, 2017, 25(3): 343-348.
Xu Xiao-su, Dong Ya, Tong Jin-wu, et al. Application of an improved fifth-order spherical simplex-radial cubature kalman filter in SINS/DVL Integrated navigation[J]. Journal of Chinese Inertial Technology, 2017, 25(3): 343-348.
21 Li N, Ma W, Man W, et al. Multiple robust high-degree cubature Kalman filter for relative position and attitude estimation of satellite formation[J]. J Navig, 2019, 72(5): 1254-1274.
22 Wang S, Fang Y, Duan S, et al. Mixed-degree spherical simplex-radial cubature Kalman filter[J]. Math Probl Eng, 2017, 2017: 1-9.
23 Dang L, Chen B, Huang Y, et al. Cubature Kalman filter under minimum error entropy with fiducial points for INS/GPS integration[J]. Acta Autom Sin, 2022, 9(3): 16.
24 高怡, 高社生, 吴佳鹏. 衰减记忆平方根UPF算法及其在组合导航中的应用[J]. 中国惯性技术学报,2014, 22(6): 777-781.
Gao Yi, Gao She-sheng, Wu Jia-Peng. fading memory square root UPF algorithm and its application in integrated navigation[J]. Journal of Chinese Inertial Technology, 2014, 22(6): 777-781.
25 杨旺明. 衰减记忆平方根容积卡尔曼滤波及其应用[J].计算机与数字工程, 2018, 46(3): 471-474.
Yang Wang-ming. Fading memory square root cubature Kalman filter and its application[J]. Computer and Digital Engineering, 2018, 46(3): 471-474.
26 Ning X, Huang P. Adaptive points range square-root cubature Kalman filter for Mars approach navigation[C]∥Proceedings of the 33rd Chinese Control Conference,Nanjing, China,2014: 903-908.
27 李荣攀, 西勤, 刘松林. 改进的衰减记忆UKF算法在伪距定位中的研究[J]. 测绘与空间地理信息, 2017, 40(6):30-32, 36.
Li Rong-pan, Xi Qin, Liu Song-lin. Research on an improved fading memory UKF algorithm in pseudorange positioning[J]. Geomatics & Spatial Information Technology, 2017, 40(6): 30-32, 36.
28 Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans Signal Process, 2002, 50(2): 174-188.
29 李星星, 纪元法, 孙希延, 等. 一种基于约束的衰减记忆容积卡尔曼滤波方法[P].中国:CN202311516111.3, 2024-02-13.
30 Shen Z, Tang Y. A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions[J]. J Adv Model Earth Syst, 2015, 7(1): 50-66.
31 葛磊. 容积卡尔曼滤波算法研究及其在导航中的应用[D].哈尔滨: 哈尔滨工程大学自动化学院, 2013.
Ge Lei. Research on cubature Kalman filtering algorithm and its application in navigation[D]. Harbin: College of Automation, Harbin Engineering University, 2013.
32 van Nguyen N, Duc T C, Tran D T. Enhanced accuracy navigation solution of an integrated SINS/GPS system using a simple and effective adaptive Kalman filter[J/OL]. [2023-07-12].
33 Yang Y, Gao W. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80: 177-183.
34 Gao W, Yang Y, Cui X, et al. Application of adaptive Kalman filtering algorithm in IMU/GPS integrated navigation system[J]. Geo-spatial Information Science, 2007, 10(1): 22-26.
35 王满林. 自适应衰减记忆UKF算法在三维水下目标跟踪中的应用[J].四川兵工学报, 2012, 33(5): 44-47.
Wang man-lin. Application of adaptive fading memory ukf algorithm in 3Dunderwater target tracking[J]. Journal of Sichuan Ordnance, 2012, 33(5): 44-47.
36 迟凤阳, 孙枫, 徐博. 迭代容积粒子滤波算法在SINS初始对准中的应用[J]. 传感器与微系统, 2013,32(7): 136-140.
Chi Feng-yang, Sun Feng, Xu Bo. Application of iterative cubature particle filter algorithm in SINS initial alignment[J]. Transducer and Microsystem Technologies, 2013, 32(7): 136-140.
37 迟凤阳. 水下航行器组合导航定位技术研究[D].哈尔滨: 哈尔滨工程大学自动化学院, 2015.
Chi Feng-yang. Research on integrated navigation and positioning technology for underwater vehicles [D]. Harbin: College of Automation, Harbin Engineering University, 2015.
38 徐晓苏, 田泽鑫, 刘义亭, 等. 基于改进型CKF的SINS初始对准方法[J]. 华中科技大学学报: 自然科学版, 2016, 44(1): 81-86.
Xu Xiao-su, Tian Ze-xin, Liu Yi-ting, et al. SINS initial alignment method based on an improved CKF [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(1): 81-86.
39 Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans Autom Control, 2009, 54(6): 1254-1269.
40 Wang S Y, Feng Y L, Duan S K, et al. Mixed-degree spherical simplex-radial cubature Kalman filter[J]. Mathematical Problems in Engineering, 2017, 2017: No. 6969453.
[1] 樊学平,刘月飞. 基于改进高斯混合粒子滤波新算法的桥梁极值应力动态预测[J]. 吉林大学学报(工学版), 2024, 54(4): 1038-1044.
[2] 金静,党建武,王阳萍,申东. 融合模糊统计纹理特征的多线索粒子滤波跟踪[J]. 吉林大学学报(工学版), 2021, 51(3): 1111-1120.
[3] 樊学平,屈广,刘月飞. 应用新数据同化算法的桥梁极值应力预测[J]. 吉林大学学报(工学版), 2020, 50(2): 572-580.
[4] 杨超宇, 李策, 梁胤程, 杨峰. 基于改进粒子滤波的煤矿视频监控模糊目标检测[J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
[5] 李娟, 刘晓龙, 卢长刚, 左英泽. 改进的粒子滤波重采样算法[J]. 吉林大学学报(工学版), 2015, 45(6): 2069-2074.
[6] 武勇, 王俊, 曹运合, 张培川. 基于二次预测的粒子滤波算法[J]. 吉林大学学报(工学版), 2015, 45(5): 1696-1701.
[7] 董宁,王宇平. 求解约束优化问题的引导多目标差分进化算法[J]. 吉林大学学报(工学版), 2015, 45(2): 569-575.
[8] 杨欣,刘加,周鹏宇,周大可. 基于多特征融合的粒子滤波自适应目标跟踪算法[J]. 吉林大学学报(工学版), 2015, 45(2): 533-539.
[9] 孔云波, 冯新喜, 鹿传国, 刘振涛. 基于Sigma点H滤波的拟蒙特卡罗粒子滤波算法[J]. 吉林大学学报(工学版), 2014, 44(6): 1831-1837.
[10] 曹洁, 戴彬, 李晓旭. 基于高斯Sigma点选取的改进UPF算法[J]. 吉林大学学报(工学版), 2014, 44(5): 1435-1440.
[11] 卞亚涛, 赵旭, 宋健, 刘允才. 并行化退火粒子滤波[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 239-243.
[12] 戴连君, 唐涛, 蔡伯根. 基于自适应粒子滤波的北斗卫星信号周跳探测[J]. 吉林大学学报(工学版), 2013, 43(04): 1146-1152.
[13] 杨澜, 赵祥模, 惠飞, 周经美, 史昕. 入侵式野草优化粒子滤波方法[J]. 吉林大学学报(工学版), 2013, 43(04): 1070-1075.
[14] 李昱辰, 李战明. 噪声未知情况下的自适应无迹粒子滤波算法[J]. 吉林大学学报(工学版), 2013, 43(04): 1139-1145.
[15] 李文辉, 周强, 王莹, 张德才. 基于均值偏移粒子滤波的自适应跟踪[J]. 吉林大学学报(工学版), 2012, 42(02): 407-411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .