吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1831-1837.doi: 10.13229/j.cnki.jdxbgxb201406045

• • 上一篇    下一篇

基于Sigma点H滤波的拟蒙特卡罗粒子滤波算法

孔云波1, 冯新喜1, 鹿传国1, 刘振涛2   

  1. 1.空军工程大学 信息与导航学院,西安 710077;
    2.中国人民解放军 95072部队,广西 南宁 530000
  • 收稿日期:2013-03-09 出版日期:2014-11-01 发布日期:2014-11-01
  • 作者简介:孔云波(1987-),男,博士研究生.研究方向:多传感器信息融合.E-mail:
  • 基金资助:
    陕西省自然科学基金项目(2012JM8023)

Quasi-Monte Carlo particle filter algorithm based on sigma point H

KONG Yun-bo1, FENG Xin-xi1, LU Chuan-guo1, LIU Zhen-tao2   

  1. 1. Information and Navigation Institute, Airforce Engineering University, Xi'an 710077,China;
    2. Unit of 95072 of the PLA, Nanning 530000,China
  • Received:2013-03-09 Online:2014-11-01 Published:2014-11-01

摘要: 在滤波算法中,用Sigma点H滤波来产生重要性概率密度函数,由于Sigma点H滤波对不确定观测噪声具有较强的鲁棒性,而且在滤波过程中考虑了最新的观测值,因此由其产生的重要性函数更逼近于真实的后验概率分布。同时在重采样阶段,利用拟蒙特卡罗重采样算法进行重采样,有效地克服了粒子退化现象并提高了状态估计精度。仿真结果表明了所提算法的可行性和有效性。

关键词: 通信技术, Sigma点转换, ∞, 滤波, 准蒙特卡罗, 粒子滤波, 非线性系统

Abstract: A new filtering algorithm is proposed. In this algorithm, the probability density function is generated by the sigma point H filter. The sigma point H filter has very high accuracy and strong robustness to uncertain observation noise, and the filter algorithm integrates the new observation. So the generated probability density function can reasonably approximate the real posterior probability distribution of the system state. At the resampling step, the degeneration problem is effectively overcome and the accuracy of state estimation is improved by using the quasi-Monte Carlo-based resampling algorithm. Simulation results demonstrated the feasibility and effectiveness of the proposed algorithm.

Key words: communication, Sigma point transformation, ∞, filtering, quasi-Monte Carlo, particle filtering, nonlinear system

中图分类号: 

  • TN953
[1] Gordon N J, Salmond D J.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings Part F, Radar, Sonar and Navigation, 1993, 140(2):107-113.
[2] Doucet A, Godsill S J, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing,2000,10(3): 197-208.
[3] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. IEEE Transactions on Signal Processing, 2004,92(3):401-422.
[4] 万洋,王首勇,于兴伟.一种扩展 H ∞ 粒子滤波方法[J].信号处理,2010,26(6):869-874. Wan Yang, Wang Shou-yong, Yu Xing-wei. A extended H ∞ particle filter algorithm[J].Signal Processing, 2010, 26(6):869-874.
[5] 朱志宇.粒子滤波算法及其应用[M].北京:科学出版社,2010.
[6] Andrieu C, Freitas J F G, Doucet A. Sequential MCMC for Bayesian model selection[C]∥IEEE Higher Order Statistics Workshop,Ceasarea,1999:130-134.
[7] Kotecha J H, Djuric P M. Gaussian particle filtering[J]. IEEE Transactions on Signal Processing, 2003,51(10):2592-2601.
[8] 赵玲玲,马培军,苏小红.一种快速准蒙特卡罗粒子滤波算法[J].自动化学报, 2010, 36(9):1351-1356. Zhao Ling-ling, Ma Pei-jun, Su Xiao-hong. A fast quasi-Monte Carlo-based particle filter algorithm[J]. Acta Automatica Sinica,2010, 36(9):1351-1356.
[9] 侯代文,殷福亮,陈喆. 基于sigma点 H ∞ 滤波的说话人跟踪方法[J]. 信号处理,2009,25(3):374-378. Hou Dai-wen,Yin Fu-liang, Chen Zhe. Sigma point H ∞ filtering method for speaker tracking[J]. Signal Processing, 2009,25(3):374-378.
[10] Guo D, Wang X D. Quasi-Monte Carlo filtering in nonlinear dynamic systems[J]. IEEE Transactions on Signal Processing, 2006,54(6):2087-2098.
[11] 吴宝成.粒子滤波重采样算法研究及其应用[D]. 哈尔滨:哈尔滨工业大学计算机科学与技术学院,2006. Wu Bao-cheng. Research and application of particle filter resampling algorithms[D]. Harbin: School of Computer Science and Technology,Harbin Institute of Technology,2006.
[12] 程水英,张剑云. 裂变自举例子滤波[J].电子学报, 2008, 36(3):500-504. Cheng Shui-ying, Zhang Jian-yun. Fission bootstrap particle filtering[J].Acta Electronica Sinice, 2008, 36(3):500-504.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[3] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[4] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[5] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[6] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[7] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[8] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[9] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[10] 孟育博, 李丕茂, 张幽彤, 王志明. 共轨系统压力波动和多次喷射油量偏差的抑制[J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[11] 刘舒, 姜琦刚, 朱航, 李晓东. 基于Hyb-F组合滤波算法的向海自然保护区NDVI时间序列重构[J]. 吉林大学学报(工学版), 2018, 48(3): 957-967.
[12] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[13] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[14] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[15] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!