吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3673-3680.doi: 10.13229/j.cnki.jdxbgxb.20240613
Hao-zhe CAO(
),Jin-ben ZHOU,Li-hua LI(
)
摘要:
为解决Wiener系统量化辨识问题,提出了一种重复学习梯度辨识算法。首先,基于分解技术构建量化Wiener系统参数分离的辨识模型,减少算法计算量。然后,利用数据窗理论对观测数据向量进行延拓,以获取更多的量化系统模态。为了解决窗长度抑制辨识性能的问题,将重复学习思想引入参数自适应律更新机制中,将窗数据批次更新转化为多次标量更新,提高估计性能。最后,估计器收敛性分析和实例对比结果证明了本文方案的有效性和优势。
中图分类号:
| 1 | 杨小玉,谢里阳,杨奕凤,等.Weibull形状参数加权极大似然估计的偏差修正[J].吉林大学学报: 工学版,2024,54(10):2764-2770. |
| Yang Xiao-yu, Xie Li-yang, Yang Yi-feng, et al. Bias correction for weighted maximum likelihood estimation of Weibull shape parameters[J]. Journal of Jilin University (Engineering and Technology Edition),2024,54(10):2764-2770. | |
| 2 | Shanshiashvili B, Prangishjvili A, Tsveraidze Z. Structure identification of continuous-time block-oriented nonlinear systems in the frequency domain[J]. IFAC-PapersOnLine, 2019, 52(13): 463-468. |
| 3 | Zhao W, Weyer E, Yin G G, et al. Adaptive regulation of block-oriented nonlinear systems using binary sensors with applications to automotive engine control[J]. IEEE Transactions on Automatic Control, 2023, 68(3): 1369-1382. |
| 4 | 郑玉彬,宋杰,刘津彤,等.基于Copula量化解析结构模型的复杂系统模块分类[J].吉林大学学报: 工学版, 2022, 52(6): 1281-1291. |
| Zheng Yu-bin, Song Jie, Liu Jin-tong, et al. Complex system module classification based on Copula numerical interpretative structural modeling[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1281-1291. | |
| 5 | Aliiskan I. Optimized inverse nonlinear function-based wiener model predictive control for nonlinear systems[J]. Arabian Journal for Science and Engineering, 2021, 46(10): 10217-10230. |
| 6 | Ling X T, Zhang X Z, Sun J, et al. When hammerstein meets wiener: nonlinearity modeling for end-to-end visible light communication links[J]. IEEE Transactions on Communications, 2023, 71(1): 310-323. |
| 7 | 吴子斌,闫巧.基于动量的映射式梯度下降算法[J].计算机科学,2022,49():178-183. |
| Wu Zi-bin, Yan Qiao. Projected gradient descent algorithm with momentum[J]. Computer Science, 2022, 49(Sup.1): 178-183. | |
| 8 | Wang J, Ji Y, Zhang X, et al. Two‐stage gradient‐based iterative algorithms for the fractional‐order nonlinear systems by using the hierarchical identification principle[J]. International Journal of Adaptive Control and Signal Processing, 2022, 36(7): 1778-1796. |
| 9 | Chaudgary N I, Khan Z A, KianiI A K, et al. Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems[J]. Chaos, Solitons & Fractals, 2022, 163: No.112611. |
| 10 | Ding F, Xu L, Zhang X, et al. Filtered auxiliary model recursive generalized extended parameter estimation methods for Box-Jenkins systems by means of the filtering identification idea[J]. International Journal of Robust and Nonlinear Control, 2023, 33(10): 5510-5535. |
| 11 | Li J, Zong T, Gu J, et al. Parameter estimation of Wiener systems based on the particle swarm iteration and gradient search principle[J]. Circuits, systems, and signal processing, 2020(39): 3470-3495. |
| 12 | Zhao Y, Yin G G, Zhang J F. Identification of Wiener systems with binary-valued output observations[J]. Automatica, 2007, 43(10): 1752-1765. |
| 13 | Bottegal G, Hjalmarsson H, Pillonetto G. A new kernel-based approach to system identification with quantized output data[J/OL]. [2024-05-23]. |
| 14 | Zhao W, Weyer E, Yin G, et al. Adaptive regulation of block-oriented nonlinear systems using binary sensors with applications to automotive engine control[J]. IEEE Transactions on Automatic Control, 2022, 68(3): 1369-1382. |
| 15 | Vörös J. New application of the key term separation principle[J]. Journal of Electrical Engineering, 2022, 73(6): 437-441. |
| 16 | Goodwin G C, Sin K S. Adaptive Filtering Prediction and Control[M]. Mineola, NY:Dover Publications, 2009. |
| 17 | Ding F, Ma H, Pan J, et al. Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation[J]. Journal of the Franklin Institute, 2021, 358(9): 5113-5135. |
| 18 | Pan J, Liu Y, Shu J. Gradient-based parameter estimation for a nonlinear exponential autoregressive time-series model by using the multi-innovation[J]. International Journal of Control, Automation, and Systems, 2023, 21: 140-150. |
| [1] | 张娜,陈峰,王剑坡,朱亚迪. 基于时空序列相似性的城轨乘客出行模式识别[J]. 吉林大学学报(工学版), 2024, 54(9): 2588-2599. |
| [2] | 周锡浈,宫贺,李敦敦,季彦婕,严杰. 建成环境对路内停车泊位使用率的非线性影响模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2520-2530. |
| [3] | 严利鑫,曾涛,贺宜,郭军华,胡鑫辉. 共驾型智能车辆人机接管行为序列编码与解析[J]. 吉林大学学报(工学版), 2024, 54(9): 2547-2556. |
| [4] | 曲昭伟,李霖,陈永恒,吴场建. 长区间掉头车辆特性分析及其安全评价[J]. 吉林大学学报(工学版), 2024, 54(8): 2206-2213. |
| [5] | 何永明,权聪,魏堃,冯佳,万亚楠,陈世升. 超高速公路车路协同路侧单元感知融合方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1923-1934. |
| [6] | 程国柱,盛林,王浩宇,冯天军. 考虑右转车二次冲突的信号交叉口行人过街安全评价方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1903-1912. |
| [7] | 秦雅琴,钱正富,谢济铭. 协同换道避障模型和轨迹数据驱动的车辆协同避障策略[J]. 吉林大学学报(工学版), 2024, 54(5): 1311-1322. |
| [8] | 张明业,杨敏,黎彧,黄世玉,李清韵. 考虑有序充电策略的多车型电动公交调度优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1293-1301. |
| [9] | 马潇驰,陆建. 基于基因表达式编程的高架道路事故实时预测[J]. 吉林大学学报(工学版), 2024, 54(3): 719-726. |
| [10] | 严利鑫,冯进培,郭军华,龚毅轲. 不同险态情景下共驾型智能车辆接管行为特征分析[J]. 吉林大学学报(工学版), 2024, 54(3): 683-691. |
| [11] | 曲大义,张可琨,顾原,王韬,宋慧,戴守晨. 自动驾驶车辆换道决策行为分析及分子动力学建模[J]. 吉林大学学报(工学版), 2024, 54(3): 700-710. |
| [12] | 涂辉招,王万锦,乔鹏,郭静秋,鹿畅,吴海飞. 自动驾驶卡车路测安全员接管干预行为解析[J]. 吉林大学学报(工学版), 2024, 54(3): 727-740. |
| [13] | 李德林,陈俊先,王永岗,王露,沈照庆. 基于潜在类别模型的急陡弯路段驾驶行为辨析[J]. 吉林大学学报(工学版), 2024, 54(12): 3526-3533. |
| [14] | 顾明臣,熊慧媛,刘增军,罗清玉,刘宏. 融合多头注意力机制的货车载重估计模型[J]. 吉林大学学报(工学版), 2024, 54(10): 2771-2780. |
| [15] | 孙文财,胡旭歌,杨志发,孟繁雨,孙微. 融合GPNet与图像多尺度特性的红外-可见光道路目标检测优化方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2799-2806. |
|