吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (8): 2385-2392.doi: 10.13229/j.cnki.jdxbgxb.20231300

• 农业工程·仿生工程 • 上一篇    下一篇

脊状结构用于翼型自噪声控制试验

程文1,2(),张成春2,3,4(),孙潇伟3,沈淳2,3,吴正阳1,2,陈正武1   

  1. 1.中国空气动力学研究开发中心空气动力噪声控制重点实验室,四川 绵阳 621000
    2.吉林大学 工程仿生教育部重点实验室,长春 130022
    3.威海峻铭动力科技有限公司,山东 威海 264200
    4.吉林大学 威海仿生研究院,山东 威海 264200
  • 收稿日期:2023-11-24 出版日期:2024-08-01 发布日期:2024-08-30
  • 通讯作者: 张成春 E-mail:cw2143@163.com;jluzcc@jlu.edu.cn
  • 作者简介:程文(1993-),女,博士研究生. 研究方向:流动控制.E-mail:cw2143@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFA0703300);气动噪声控制重点实验室开放课题(ANCL20210205);国家自然科学基金项目(52275289);吉林省科技发展计划项目(20220508144RC);山东省自然科学基金项目(ZR2023QE209);泰山产业领军人才项目

Experimental on self-noise control of airfoil with ridge-like structure

Wen CHENG1,2(),Cheng-chun ZHANG2,3,4(),Xiao-wei SUN3,Chun SHEN2,3,Zheng-yang WU1,2,Zheng-wu CHEN1   

  1. 1.Key Laboratory of Aerodynamic Noise Control,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.Key Laboratory of Bionics Engineering(Ministry of Education),Jilin University,Changchun 130022,China
    3.Weihai Junming Power Technology Co. ,Ltd. ,Weihai 264200,China
    4.Weihai Institute of Bionics,Jilin University,Weihai 264200,China
  • Received:2023-11-24 Online:2024-08-01 Published:2024-08-30
  • Contact: Cheng-chun ZHANG E-mail:cw2143@163.com;jluzcc@jlu.edu.cn

摘要:

本文研究了NACA0012翼型在0°和10°攻角时不同来流速度下的声学性能,声学风洞试验显示,10°攻角时,翼型在30~60 m/s速度范围内产生明显单音噪声,其频率与Arbey声反馈模型预测结果接近。以有效降低单音噪声为导向,本文提出采用脊状结构打破声反馈回路的设想,并探讨脊状结构位置及排布形式对降噪性能的影响规律。结果表明:脊状结构越靠前,降噪效果越明显;随着速度的增加,靠后位置的脊状结构依次不再具有降噪效果。另外,单音噪声的产生只和压力面的流动状态有关,当压力面的流动状态被脊状结构打破后,便无法形成有效的反馈回路。最后,基于Arbey声学反馈理论,探讨了不同位置的脊状结构的降噪性能差异,发现当脊状结构位于叶片压力面最大速度点之前时,可以有效干预流场从而抑制单音噪声的产生。

关键词: 流动噪声控制, 脊状结构, 翼型噪声实验, 翼型自噪声, 声反馈回路

Abstract:

This paper presents an experiment investigation of acoustic properties for NACA0012 airfoil at different freestream velocities with 0°and 10°angle of attack(AOA). The acoustic wind tunnel test results show that at the freestream velocities of 30-60 m/s and AOA= 0°, the dominant noise is broadband noise, but at AOA=10°, the dominant noise is switched into tonal noise, and the tonal frequency is close to the Arbey acoustic feedback model. In order to eliminate the tonal noise of airfoil, a flow control method using a ridge-like structure to break the acoustic feedback loop is proposed, and the influence of the position and arrangement of the structure on the noise reduction performance is discussed. The results show that the closer the structure is to the leading edge of the airfoil, the more obvious the noise reduction effect is. With the increase of speed, the ridge-like structure in the back position no longer has a noise reduction effect in turn. In addition, the generation of tonal noise seems to be only related to the flow state of the pressure surface. When the flow state of the pressure surface is broken by the ridge-like structure, an effective feedback loop cannot be formed. Finally, based on the Arbey acoustic feedback theory, the differences in noise reduction performance of ridge-like structures are explored. It was found that when the ridge-like structure is located before the maximum speed point of the blade pressure surface, it can effectively intervene in the flow field to suppress the generation of monophonic noise.

Key words: flow noise control, ridge-like structure, airfoil noise experiment, airfoil tonal self-noise, acoustic feedback loop

中图分类号: 

  • TB53

图1

风洞试验实物图和传声器安装示意图"

图2

翼型前缘/尾缘实物图及其脊状结构示意图"

表1

具有脊状结构的叶片模型M1~M5排布方式"

位置M1M2M3M4M5
分布双面双面双面吸力面压力面
前缘位置0.010 25c0.131 25c0.25c0.010 25c0.010 25c
后缘位置0.962 5c0.962 5c0.962 5c0.962 5c0.962 5c

图3

NACA0012翼型在不同攻角下的噪声频谱"

表2

单音噪声频率预测结果对比"

速度/模型30 m/s40 m/s50 m/s60 m/s
试验1 1251 7622 4502 812
Paterson1 0582 1352 7363 256
Arbey1 1361 7412 2562 668
Brooks1 1231 5342 0282 630

图4

30~60 m/s来流速度下,模型M1~M3的声压级频谱"

图5

30~60 m/s来流速度下,模型M4~M5的声压级频谱"

图6

30~60m/s来流速度下叶片压力面等熵马赫数分布和表面最大等熵马赫数相对位置"

1 Amiet R K. Noise due to turbulent flow past a trailing edge[J]. Journal of Sound and Vibration, 1976,47(3): 387-393.
2 Lowson M, Fiddes S, Nash E. Laminar boundary layer aeroacoustic instabilities[C]∥32th AIAA/CEAS Aeroacoustics Conference,1994: 0358.
3 Nash E C, McAlpine A, Lowson M V. Boundary-ayer instability noise on aerofoils[J].Journal of Fluid Mechanics, 1999, 382(1): 27-61.
4 Chen K, Liu Q P, Liao G H,et al. The sound suppression characteristics of wing feather of Owl[J]. Journal of Bionic Engineering, 2012,9(2): 192-199.
5 徐成宇,钱志辉,刘庆萍,等. 基于长耳鸮翼前缘的仿生耦合翼型气动性能[J]. 吉林大学学报:工学版, 2010, 40(1): 108-112.
Xu Cheng-yu, Qian Zhi-hui, Liu Qing-ping, et al. Aerodynamic performance of bionic coupled foils based on leading edge of long-eared owl wing[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(1): 108-112.
6 葛长江, 叶辉, 胡兴军, 等.鸮翼后缘噪声的预测及控制[J]. 吉林大学学报:工学版, 2016, 46(6): 1981-1986.
Ge Chang-jiang, Ye Hui, Hu Xing-jun, et al. Prediction and control of trailing edge noise on owl wings[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(6): 1981-1986.
7 Johari H, Henoch C W, Custodio D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11): 2634-2642.
8 Shorbagy M, El-hadidi B, El-Bayoumi, et al. Experimental study on bio-inspired wings with tubercles[C]∥27th AIAA/CEAS Aeroacoustics Conference, San Diego, USA, 2019: 2643-2672.
9 郑覃. 扩压叶栅前缘结状凸起流动机理研究[D].上海:上海交通大学航空航天学院,2019.
Zheng Tan. Investigation of flow mechanisms for Leading edge tubercles in compressor cascade[D]. Shanghai: School of Aeronautics and Astronautics, Shanghai Jiaotong University, 2019.
10 Alex S H, Lau S H, Kim J W. The effect of wavy leading edges on aerofoil-gust interaction noise[J]. Journal Sound Vib, 2013; 332(24): 6234-6253.
11 陈伟杰. 基于仿生学原理的叶片气动噪声控制实验及数值研究[D]. 西安: 西北工业大学动力与能源学院,2018.
Chen Wei-jie. Experimental and numerical study on blade aerodynamic noise control by bio-inspired treatments[D].Xi'an: School of Power and Energy, Northwestern Polytechnical University, 2018.
12 Paterson R W, Vogt P G, Fink M R. Vortex noise of isolated airfoils[J]. Journal of Aircraft,1973,10(5): 296-302.
13 Brooks T F, Pope D S, Marcolini, M A. Airfoil Self-noise and Prediction[M]. NSAS Reference Publication, 1989.
14 Christopher K W T. Discrete tones of isolated airfoils[J]. The Journal of the Acoustical Society of America, 1974,55(6): 1173-1177.
15 Christopher K W T, Ju H B. Aerofoil tones at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2012,690: 536-570.
16 Plogmann B, Herrig A, Wurz W. Experimental investigations of a trailing edge noise feedback mechanism on a NACA0012 airfoil[J]. Experiments in Fluids, 2013,54(5): 1-14.
17 Desquesnes G, Terracol M, Sagaut P. Numerical investigation of the tone noise mechanism over laminar airfoils[J]. Journal of Fluid Mechanics, 2007, 591: 155-182.
18 Fink M R. Prediction of airfoil tone frequencies[J]. Journal of Aircraft, 1975,12(2): 118-120.
19 Arbey H, Bataille J. Noise generated by airfoil profiles placed in a uniform laminar flow[J]. Journal of Fluid Mechanics, 1983,134: 33-47.
20 Prateeka J, Yanna P, Gyuzel Y, et.al. Experimental investigation of aerofoil tonal noise at low Mach number[J]. Journal of Fluid Mechanics, 2022, 932: A37.
21 Jones L E, Sandberg R D. Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops[J]. Journal of Sound & Vibration, 2011,330(25): 6137- 6152.
22 Lu W S, Liu P Q, Guo H, et al. Investigation on tones due to self-excited oscillation within leading-edge slat cove at different angles of attack: frequency and intensity[J]. Aerospace Science and Technology, 2019,91: 59-69.
23 Probsting S, Yang Y N, Zhang H Y, et.al. Effect of Mach number on the aeroacoustic feedback loop generating airfoil tonal noise[J]. Physics of Fluids, 2022,34: 094115.
24 Jones L E, Richard D. Numerical investigation of tonal airfoil self-noise generated by an acoustic feedback-loop[C]∥16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden, 2010: 3701-3714.
25 Chong T P, Joseph P. An experimental study of tonal noise mechanism of laminar airfoils[C]∥15th AIAA/CEAS Aeroacoustics Conference, Miami, Florida, 2009: 3345.
26 Arcondoulis E J G, Doolan C J, Zander A C, et al. An experimental investigation of airfoil tonal noise caused by an acoustic feedback loop[C]∥Annual Conference of the Australian Acoustical Society, Victor Harbor, Australia, 2013: 23-30.
[1] 程亚兵,杨泽宇,李岩,安立持,徐泽辉,曹鹏宇,陈璐翔. 基于混合动力汽车正时齿形链系统的振动噪声特性[J]. 吉林大学学报(工学版), 2023, 53(9): 2465-2473.
[2] 罗乐, 郑旭, 吕义, 郝志勇. 高速列车车轮及轮对的声辐射特性[J]. 吉林大学学报(工学版), 2016, 46(5): 1464-1470.
[3] 孙伟, 李健, 贾师. 硬涂层复合结构非线性刚度及阻尼辨识[J]. 吉林大学学报(工学版), 2016, 46(4): 1156-1162.
[4] 高印寒, 张澧桐, 梁杰, 王智博, 姜文君. 基于客观心理声学参数的重型商用车车内异响噪声分析[J]. 吉林大学学报(工学版), 2016, 46(1): 43-49.
[5] 莫愁, 陈吉清, 兰凤崇. 逆子结构传递路径分析方法[J]. 吉林大学学报(工学版), 2015, 45(6): 1751-1756.
[6] 郝志勇, 丁政印, 孙强. 基于FE-SEA混合法研究高速列车静音地板的隔声性能[J]. 吉林大学学报(工学版), 2015, 45(4): 1069-1075.
[7] 王彬星, 郑四发, 刘海涛, 连小珉. 基于现场测量的多孔材料声学特性参数估计 [J]. , 2012, (03): 545-550.
[8] 邓江华,刘献栋,单颖春. 基于近场声全息的车内噪声贡献量[J]. 吉林大学学报(工学版), 2010, 40(03): 666-0671.
[9] 王中兴, 荣亮亮, 林君. 地面核磁共振找水信号中的奇异干扰抑制[J]. 吉林大学学报(工学版), 2009, 39(05): 1282-1287.
[10] 梁杰, 陆晓军, 孙巍. S493Q柴油机噪声源识别与噪声控制[J]. 吉林大学学报(工学版), 2001, (3): 57-60.
[11] 尚新磊, 林君, 田瑜娟, 王应吉. 继电器平滑切换技术及其在核磁共振感应系统中的应用[J]. 吉林大学学报(工学版), 2011, 41(02): 398-0402.
[12] 常振臣, 王登峰, 周淑辉, 郭骁. 车内噪声控制技术研究现状及展望[J]. 吉林大学学报(工学版), 2002, (4): 86-90.
[13] 梁杰, 孙巍, 陆晓军, 邢四海. CA498型柴油机表面辐射噪声源的识别及其降噪措施[J]. 吉林大学学报(工学版), 2003, (1): 107-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .