吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 211-220.doi: 10.13229/j.cnki.jdxbgxb.20230306

• 交通运输工程·土木工程 • 上一篇    

玄武岩纤维网格水泥基复合材料加固RC梁抗剪性能试验

姜浩1(),赵正文1,2   

  1. 1.吉林建筑大学 土木工程学院,长春 130011
    2.中建八局华中建设有限公司 安徽分公司,安徽 阜阳 236000
  • 收稿日期:2023-04-04 出版日期:2025-01-01 发布日期:2025-03-28
  • 作者简介:姜浩(1974-),男,教授,博士. 研究方向:结构加固.E-mail: jianghao@jlju.edu.cn
  • 基金资助:
    吉林省科技攻关重点项目(20180201079);吉林省发改委产业创新项目(2017C050-3);吉林省教育厅科学技术研究规划项目(JJKH20210300KJ)

Experiment on shear performance of RC beams strengthened with basalt fiber grid cement-based composites

Hao JIANG1(),Zheng-wen ZHAO1,2   

  1. 1.College of Civil Engineering,Jilin Jianzhu University,Changchun 130011,China
    2.China Construction Eight Bureau Central China Construction Co. ,Ltd. ,Anhui Branch,Fuyang 236000,China
  • Received:2023-04-04 Online:2025-01-01 Published:2025-03-28

摘要:

通过5根试验梁进行三点弯曲静力加载试验,研究了玄武岩纤维网格水泥基复合材料(Basalt fabric-reinforced cementitious matrix,B-FRCM)对钢筋混凝土梁的抗剪加固效果的影响,分析了试验梁的破坏形态以及玄武岩纤维增强复合材料(Basalt fiber reinforced polymer, BFRP)网格在受力过程中的抗剪贡献,并将试验结果与收集的计算模型进行对比。结果表明:采用B-FRCM加固后的RC梁抗剪承载力有较为明显的提升,提升幅值在24%~33%;B-FRCM加固可有效抑制斜裂缝发展,延缓极限状态的出现;在已有4种计算模型中,都高估了BFRP网格的抗剪贡献。

关键词: 结构工程, BFRP网格, 工程水泥基复合材料(ECC), 箍筋间距, 抗剪性能, 计算模型

Abstract:

Three-point bending static loading tests were carried out on five test beams to study the effect of basalt fiber fabric-reinforced cementitious matrix (B-FRCM ) on the shear reinforcement effect of reinforced concrete beams. The failure modes of the test beams and the shear contribution of basalt fiber reinforced polymer (BFRP) grids in the process of loading were analyzed, and the test results were compared with the collected calculation models. The results show that the shear capacity of RC beams strengthened with B-FRCM is obviously improved, and the increase amplitude is 24% ~33%. B-FRCM reinforcement can effectively inhibit the development of inclined cracks and delay the occurrence of limit state. In the four existing calculation models, the shear contribution of BFRP grids is overestimated.

Key words: structural engineering, BFRP grid, engineering cementations composite (ECC), stirrup spacing, shear performance, calculation model

中图分类号: 

  • TU375.1

图1

构件尺寸及配筋图"

表1

试验梁分组"

混凝土

强度

等级

受拉纵筋/mm箍筋/mm剪跨比a/h0箍筋间距/mm

网格

间距/mm

试验梁名称
C405C20C6@150/752.85150S1-NS
15050×50S1-G1
150100×100S1-G2
75S2-NS
7550×50S2-G1

图2

试验梁主要制作过程"

图3

狗骨抗拉试验"

表2

混凝土和ECC材料力学性能"

材料类别标准立方体抗压度/MPa平均抗压强度/MPa抗拉强度/MPa平均抗拉强度/MPa弹性模量/GPa
C4046.7048.202.522.6734.3
48.482.63
49.422.86
ECC63.5265.166.156.4325.9
66.306.51
65.666.63

表3

钢筋和BFRP网格材料的力学性能"

材料类别横截面积/mm2屈服强度/MPa极限抗拉强度/MPa弹性模量/GPa
纵筋D20314.16445615200
箍筋D628.26413615200
BFRP网格3.62-236287

图4

试验加载装置"

图5

试验梁位移计、钢筋应变布置"

图6

BFRP网格应变测点布置"

图7

试验梁混凝土应变布置"

图8

试验梁破坏形态"

图9

荷载-位移图"

表4

各试验梁试验结果"

试件名称

箍筋

间距/mm

网格

间距/mm

开裂

荷载/kN

极限

荷载/kN

极限荷载提升

幅值/%

极限

位移/mm

极限位移提升

幅值/%

破坏模式
S1-NS150-40167.9-5.8-SC
S1-G150×5043224.533.77.020.7SC
S1-G2100×10048209.124.56.817.2SC
S2-NS75-52221.9-6.7-SC
S2-G150×5054259.917.17.16.0SC+PD

图10

BFRP竖向网格荷载-应变曲线"

图11

BFRP横向网格荷载-应变曲线"

表5

试验值与计算值对比"

试件编号Vexp/kNVg1/kNVexp/Vg1Vg2/KNVexp/Vg2Vg3/kNVexp/Vg3Vg4/kNVexp/Vg4
平均值0.830.930.870.93
S1-NS167.9172.10.98172.10.98172.10.98172.10.98
S1-G1224.5324.10.69247.20.91286.30.78249.20.90
S1-G2209.1267.50.78229.20.91248.50.84235.60.89
S2-NS221.9221.71.00221.71.00221.71.00221.71.00
S2-G1259.9373.60.70296.80.87335.90.77298.80.87
1 邢丽丽, 孔祥清. 外贴FRP加固钢筋混凝土梁结构性能研究进展[J]. 混凝土, 2018(9): 40-44.
Xing Li-li, Kong Xiang-qing. Research progress on structural performance of reinforced concrete beams strengthened with FRP[J]. Concrete, 2018(9): 40-44.
2 Li W W, Huang Z Q, Huang Z F, et al. Shear behavior of RC beams with corroded stirrups strengthened using FRP laminates: effect of the shear span-to-depth ratio[J]. Journal of Composites for Construction, 2020, 24(4): No.4020033.
3 张海霞, 孙闯, 李程翔. 内嵌FRP筋加固混凝土梁的抗剪性能研究[J]. 沈阳建筑大学学报:自然科学版,2018, 34(3): 419-429.
Zhang Hai-xia, Sun Chuang, Li Cheng-xiang. Study on shear behavior of concrete beams strengthened with embedded FRP bars[J]. Journal of Shenyang Architecture University(Natural Science Edition), 2018,34(3): 419-429.
4 叶华文, 唐诗晴, 段智超, 等. 预应力纤维增强复合材料(FRP)桥梁结构加固应用2020年度研究进展[J]. 土木与环境工程学报: 中英文, 2021, 43():185-189.
Ye Hua-wen, Tang Shi-qing, Duan zhi-chao, et al. Research progress of prestressed fiber reinforced polymer (FRP) bridge structure reinforcement in 2020[J]. Journal of Civil and Environmental Engineering (Chinese and English), 2021,43(Sup.1): 185-189.
5 D'Antino T, Focacci F, Sneed L H,et al. Relationship between the effective strain of PBO FRCM-strengthened RC beams and the debonding strain of direct shear tests[J]. Engineering Structures,2020,216(C): No.110631.
6 Feng R, Liu Y X, Zhu J H, et al. Flexural behaviour of C-FRCM strengthened corroded RC continuous beams[J]. Composite Structures,2020,245:No. 112200.
7 Hadad H A, Erickson B, Nanni A. Flexural analysis and design of FRCM-strengthened RC beams[J]. Construction and Building Materials,2020,244(C):No.118371.
8 Younis A, Ebead U, Shrestha K C. Different FRCM systems for shear-strengthening of reinforced concrete beams[J]. Construction and Building Materials,2017,153: 514-526.
9 王姝燏. B-FRCM加固钢筋混凝土梁抗弯性能有限元分析[D]. 长春:吉林建筑大学土木工程学院, 2019.
Wang Shu-yu. Finite element analysis of flexural behavior of reinforced concrete beams strengthened with B-FRCM[D]. Changchun: College of Civil Engineering, Jilin Jianzhu University,2019.
10 王娟. 玄武岩纤维的生产及其应用[J]. 国际纺织导报,2022, 50(2): 3-6.
Wang Juan. Production and application of basalt fiber [J]. International Textile Herald, 2022,50(2): 3-6.
11 .混凝土结构试验方法标准 [S].
12 罗利波. 高性能复合砂浆钢筋网抗剪加固混凝土梁试验研究[J]. 建筑科学, 2013, 29(5): 52-55.
Luo Li-bo.Experimental study on shear strengthened concrete beams with high performance composite mortar mesh[J].Building Science, 2013, 29(5): 52-55.
13 陈文永, 陈小兵, 丁一, 等. 纤维网格及ECC材料抗剪加固性能研究[J]. 工业建筑, 2009, 39(12):118-122.
Chen Wen-yong, Chen Xiao-bing, Ding Yi, et al. Research on shear reinforcement performance of fiber grid and ECC materials[J]. Industrial Building, 2009, 39(12): 118-122.
14 Blanksvärd T, Täljsten B, Carolin A. Shear strengthening of concrete structures with the use of mineral-based composites[J]. Journal of Composites for Construction, 2009, 13(1): 25-34.
15 Guo R, Pan Y, Cai L H, et al. Study on design formula of shear capacity of RC beams reinforced by CFRP grid with PCM shotcrete method[J]. Engineering Structures, 2018, 166(5): 427-440.
[1] 赵金全,周龙,丁永刚,朱熔基. 螺旋箍筋-波纹管浆锚连接锚固性能试验[J]. 吉林大学学报(工学版), 2024, 54(9): 2484-2494.
[2] 杨伟松,张安,许卫晓,李海生,杜轲. 刚度增强型金属连梁阻尼器的抗震性能[J]. 吉林大学学报(工学版), 2024, 54(9): 2469-2483.
[3] 阎奇武,邹忠亮. 减震结构阻尼器优化布置混合算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2267-2274.
[4] 姜封国,周玉明,白丽丽,梁爽. 改进磷虾群算法及其在结构优化中的应用[J]. 吉林大学学报(工学版), 2024, 54(8): 2256-2266.
[5] 张广泰,周乘孝,刘诗拓. 盐渍土环境下纤维锂渣混凝土柱恢复力模型[J]. 吉林大学学报(工学版), 2024, 54(7): 1944-1957.
[6] 刁延松,任义建,杨元强,赵凌云,刘秀丽,刘芸. 带有摩擦耗能组件的可更换钢梁柱拼接节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1643-1656.
[7] 樊学平,刘月飞. 基于改进高斯混合粒子滤波新算法的桥梁极值应力动态预测[J]. 吉林大学学报(工学版), 2024, 54(4): 1038-1044.
[8] 刘一凡,缪志伟,申晨,耿祥东. 基于蒙特卡罗法的不均匀锈蚀钢筋力学性能评估[J]. 吉林大学学报(工学版), 2024, 54(4): 1007-1015.
[9] 樊学平,周衡,刘月飞. 基于Gaussian Copula-贝叶斯动态模型的桥梁构件时变可靠性分析[J]. 吉林大学学报(工学版), 2024, 54(2): 485-493.
[10] 杨海旭,郭悦,王海飙,胡宜. 冷弯薄壁型钢-胶合木组合梁受弯性能[J]. 吉林大学学报(工学版), 2024, 54(12): 3513-3525.
[11] 范亮,徐英铭,谭阳. 集束群钉式装配组合梁界面滑移计算[J]. 吉林大学学报(工学版), 2023, 53(9): 2533-2541.
[12] 樊学平,周衡,刘月飞. 桥梁时变可靠性的多过程贝叶斯动态混合预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2332-2338.
[13] 熊二刚,巩忠文,罗佳明,范团结. 基于数字图像相关技术的钢筋混凝土梁裂缝试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1094-1104.
[14] 王晓东,李宁静,李强. 高压脉冲放电破碎混凝土梁试验[J]. 吉林大学学报(工学版), 2023, 53(2): 496-504.
[15] 匡亚川,陈立斌,李超举,贺宇豪. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报(工学版), 2023, 53(2): 538-546.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!