吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1643-1656.doi: 10.13229/j.cnki.jdxbgxb.20220952

• 交通运输工程·土木工程 • 上一篇    

带有摩擦耗能组件的可更换钢梁柱拼接节点抗震性能试验

刁延松(),任义建,杨元强,赵凌云,刘秀丽,刘芸   

  1. 青岛理工大学 土木工程学院,山东 青岛 266525
  • 收稿日期:2022-07-26 出版日期:2024-06-01 发布日期:2024-07-23
  • 通讯作者: 刁延松 E-mail:diaoys@163.com
  • 基金资助:
    山东省自然科学基金项目(ZR2021ME239)

Experimental on seismic performance of replaceable splicing steel beam-column joints with friction energy dissipation components

Yan-song DIAO(),Yi-jian REN,Yuan-qiang YANG,Ling-yun ZHAO,Xiu-li LIU,Yun LIU   

  1. School of Civil Engineering,Qingdao University of Technology,Qingdao 266525,China
  • Received:2022-07-26 Online:2024-06-01 Published:2024-07-23
  • Contact: Yan-song DIAO E-mail:diaoys@163.com

摘要:

基于可恢复功能的抗震设计理念,提出了一种带有摩擦耗能组件的可更换钢梁柱拼接节点。该节点同时利用屈服和摩擦两种机制进行耗能,具有延性好、损伤可控及损伤后可更换等优点。设计制作了缩尺比为1∶1.5的2个可更换钢梁柱拼接节点和1个悬臂段螺栓连接钢梁柱节点试验模型,分别对其进行拟静力试验。对破坏后的2个可更换钢梁柱拼接节点试件进行修复,并进行二次加载,得到了节点试件在低周往复荷载作用下的滞回曲线、骨架曲线、刚度退化曲线、应变和位移曲线、延性及耗能等抗震性能指标。结果表明:提出的可更换钢梁柱拼接节点的延性及耗能能力均优于悬臂段螺栓连接钢梁柱节点;可更换钢梁柱拼接节点的塑性损伤主要集中在可更换构件上,而主体构件基本保持在弹性工作范围内;修复后的节点几乎完全恢复了抗震性能,满足可更换性的要求。

关键词: 结构工程, 可恢复功能, 可更换钢梁柱拼接节点, 抗震性能, 摩擦耗能, 拟静力试验

Abstract:

Based on the seismic design concept of recoverable function, a replaceable splicing steel beam-column joint with friction energy dissipation components is proposed in this paper. The joint uses both ductility and friction mechanisms for energy dissipation, which has the advantages of good ductility, controllable damage and replaceablility after damage. Two replaceable splicing steel beam-column joints specimen models and one cantilever bolted connection steel beam-column joint specimen model with the scale ratio of 1∶1.5 were designed and manufactured. The quasi-static test method was used to conduct experimental research on these joint specimens. Two replaceable splicing steel beam-column joints after failure were repaired, and then they were reloaded. The seismic performance indexes of the joint specimens under low cyclic loading, such as hysteresis curve, skeleton curve, stiffness degradation curve, strain and displacement curve, ductility and energy dissipation were obtained. The results show that the ductility and energy dissipation capacity of the proposed replaceable splicing steel beam-column joint are better than that of the cantilever bolted connection steel beam-column joint. The plastic damage is mainly concentrated in the replaceable components, and the main components of the replaceable splicing steel beam-column joints are basically maintained in the elastic working range. The repaired joints can almost completely restore the seismic performance and meet the requirements of replaceability.

Key words: structural engineering, recoverable function, replaceable splicing steel beam-column joint, seismic performance, friction energy consumption, quasi-static test

中图分类号: 

  • TU391

图1

可更换钢梁柱拼接节点"

图2

CSJ-1~CSJ-3节点试件设计详图"

表1

节点试件截面尺寸及部分参数"

试件编号悬臂段长度/mm腹板连接板螺栓群加载方式
左侧右侧
CSJ-13004×M208×M20一次加载
CSJ-1*3004×M208×M20二次加载
CSJ-23006×M188×M20一次加载
CSJ-2*3006×M188×M20二次加载
CSJ-33008×M168×M16一次加载

图3

加载装置示意图"

图4

加载制度"

表2

试样尺寸"

试件材质厚度/mm平行长度/mm
柱翼缘Q355B14140
柱腹板Q355B12130
梁翼缘Q235B12130
翼缘连接板LYP16012130
悬臂段腹板Q355B10120
梁腹板Q235B10120

表3

试样拉伸试验结果(平均值)"

试件

屈服

强度

fy/MPa

极限

强度

fu/MPa

弹性

模量

E/GPa

伸长率

δ/%

屈服

应变

εyε

柱翼缘400.82555.362.2626.611 771.50
柱腹板371.33530.832.0922.701 773.05
梁翼缘322.17479.672.1322.591 516.02
翼缘连接板264.37395.451.9230.611 379.29
悬臂段腹板418.30573.002.0919.442 001.24
梁腹板274.20423.161.8929.961 453.72

图5

应变片及位移计布置方案"

图6

CSJ-1试验现象"

图7

CSJ-1*试验现象"

图8

CSJ-2试验现象"

图9

CSJ-2*试验现象"

图10

CSJ-3试验现象"

图11

所有节点的滞回曲线"

图12

所有节点的骨架曲线"

表4

节点的位移延性系数及耗能指标"

节点编号位移延性系数μ总耗能/(kN·m)最大等效黏滞阻尼系数ζeq能量耗散系数E
CSJ-14.37144.330.362.23
CSJ-1*3.99150.860.372.34
CSJ-24.53146.930.362.27
CSJ-2*3.85151.680.372.34
CSJ-34.35126.670.342.15

图13

所有节点的等效黏滞阻尼系数曲线"

图14

节点各级总耗能"

图15

所有节点的刚度退化曲线"

图16

CSJ-1~CSJ-3的位移曲线"

图17

CSJ-1~CSJ-3构件损伤图"

1 Jiang Zi-qin, Li Shi-huan, Liu Xue-chun, et al. Influence of bolts on seismic performance of earthquake-resilient prefabricated sinusoidal corrugated web steel beam-column joints[J]. Journal of Constructional Steel Research, 2020, 172: No. 106214.
2 Tabar A M, Deylami A. Investigation of major parameters affecting instablility of steel beams with RBS moment connections[J]. Steel and Composite Structures, 2006, 6(3): 203-219.
3 Ramhormozian S, Clifton G C, Macrae G A, et al. The Sliding hinge joint: final steps towards an optimum low damage seismic-resistant steel system[J]. Key Engineering Materials, 2018, 763: 751-760.
4 吕西林,全柳萌,蒋欢军. 从16届世界地震工程大会看可恢复功能抗震结构研究趋势[J]. 地震工程与工程振动, 2017, 37(3): 1-9.
Xi-lin Lyu, Quan Liu-meng, Jiang Huan-jun. Research trend of earthquake resilient structures seen from 16WCEE[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(3): 1-9.
5 张爱林,程魁魁,姜子钦,等. 可恢复功能装配式开洞槽钢梁柱节点力学性能及受力机理研究[J]. 工业建筑, 2020, 50(3): 29-35.
Zhang Ai-lin, Cheng Kui-kui, Jiang Zi-qin, et al. Research on mechanical properties and stress mechanism of earthquake-resilient prefabricated opening-web channel beam-column joints[J]. Industrial Construction, 2020, 50(3): 29-35.
6 Lee C H, Jung J H, Kim S Y. Cyclic seismic performance of Weak-Axis RBS welded steel moment connections[J]. International Journal of Steel Structures, 2019, 19(5): 1592-1604.
7 Allahreza M G, Mehrzad T, Behrokh H H. Experimental evaluation of rigid connection with reduced section and replaceable fuse[J]. Structures, 2018, 16: 390-404.
8 Luís C, Jorge M P, Miguel E, et al. Hysteretic behaviour of dissipative bolted fuses for earthquake resistant steel frames[J]. Journal of Constructional Steel Research, 2013, 85: 151-162.
9 邵铁峰,陈以一. 采用耗能角钢连接的部件可更换梁试验研究[J]. 建筑结构学报, 2016, 37(7): 38-45.
Shao Tie-feng, Chen Yi-yi. Experimental study on steel H-beams with replaceable energy dissipation angle[J]. Journal of Building Structures, 2016, 37(7): 38-45.
10 贺修樟,陈以一. 下翼缘组件可更换框架组合梁的设计方法及验证[J]. 建筑结构学报, 2020, 41(3): 1-13.
He Xiu-zhang, Chen Yi-yi. Design method and its verification for connection of steel-concrete composite beams with replaceable elements at bottom flange[J]. Journal of Building Structures, 2020, 41(3): 1-13.
11 Jiang Zi-qin, Niu Zi-yao, Cheng Kui-kui, et al. Experimental study of earthquake-resilient high ductility prefabricated opening-web steel channel beam-column joint[J]. Journal of Building Engineering, 2022, 49: No.104041.
12 Zhang Ai-lin, Zhang Hang, Jiang Zi-qin, et al. Low cycle reciprocating tests of earthquake-resilient prefabricated column-flange beam-column joints with different connection forms[J]. Journal of Constructional Steel Research, 2020, 164: No.105771.
13 Lu Ying-ting, Guo Zi-xiong, Basha S H, et al. Performance of steel beams with replaceable buckling restrained fuses under cyclic loading[J]. Journal of Constructional Steel Research, 2022, 194: No.107310.
14 Leung H K, Clifton G C, Khoo H H, et al. Experimental studies of eccentrically braced frame with rotational active links[C]∥8th Conference on Behaviour of Steel Structures in Seismic Areas (STESSA), Shanghai, China, 2015.
15 Feng Wei-kang, Fang Cheng, Wang Wei. Behavior and design of top flange-rotated self-centering steel connections equipped with SMA ring spring dampers[J]. Journal of Constructional Steel Research, 2019,159: 315-329.
16 AI . Seismic provisions for structural steel buildings[S].
17 . 金属材料拉伸实验第1部分:室温试验方法 [S].
18 任如月. 混合框架可更换梁的抗震性能及可更换性评价方法[D]. 西安: 西安建筑科技大学土木工程学院, 2019.
Ren Ru-yue. Seismic performance and replaceability evaluation method for hybrid frame replaceable beams[D]. Xi'an: School of Civil Engineering, Xi'an University of Architecture and Technology, 2019.
19 纪晓东,马琦峰,王彦栋,等. 钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(6): 1-11.
Ji Xiao-dong, Ma Qi-feng, Wang Yan-dong, et al. Cyclic tests of replaceable shear links in steel coupling beams[J]. Journal of Building Structures, 2014, 35(6): 1-11.
20 Jason M C, Hiroshi A, Masahiro I, et al. Permissible residual deformation levels for building structures considering both safety and human elements[C]∥The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[1] 何华飞,李兆平,符瑞安,马绍麟,黄明利. 考虑地层约束效应的预制侧墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1601-1611.
[2] 樊学平,刘月飞. 基于改进高斯混合粒子滤波新算法的桥梁极值应力动态预测[J]. 吉林大学学报(工学版), 2024, 54(4): 1038-1044.
[3] 刘一凡,缪志伟,申晨,耿祥东. 基于蒙特卡罗法的不均匀锈蚀钢筋力学性能评估[J]. 吉林大学学报(工学版), 2024, 54(4): 1007-1015.
[4] 樊学平,周衡,刘月飞. 基于Gaussian Copula-贝叶斯动态模型的桥梁构件时变可靠性分析[J]. 吉林大学学报(工学版), 2024, 54(2): 485-493.
[5] 雷鸣,尹思阳,王德玲,张继承,路世伟. 基于静力推覆分析算法的高层建筑混凝土核心筒抗震性能模拟[J]. 吉林大学学报(工学版), 2023, 53(9): 2573-2580.
[6] 范亮,徐英铭,谭阳. 集束群钉式装配组合梁界面滑移计算[J]. 吉林大学学报(工学版), 2023, 53(9): 2533-2541.
[7] 樊学平,周衡,刘月飞. 桥梁时变可靠性的多过程贝叶斯动态混合预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2332-2338.
[8] 邸振勇,杨新辉,林霄. 基于荷载⁃位移滞回曲线的建筑双梁⁃柱节点抗震性能分析[J]. 吉林大学学报(工学版), 2023, 53(7): 2061-2066.
[9] 王林峰,夏万春,徐浪,黄晓明,谭国金,张继旭. 板簧式减震锚头结构及抗震性能分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1842-1852.
[10] 王卫华,朱勇斌,祁神军,霍静思,郭秀泉,钟振安. 摩擦耗能型翼缘削弱式钢梁连接的承载性能[J]. 吉林大学学报(工学版), 2023, 53(5): 1400-1410.
[11] 熊二刚,巩忠文,罗佳明,范团结. 基于数字图像相关技术的钢筋混凝土梁裂缝试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1094-1104.
[12] 匡亚川,陈立斌,李超举,贺宇豪. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报(工学版), 2023, 53(2): 538-546.
[13] 闫清峰,张纪刚,王涛,陈德刚,郁有升,杨迎春. 预制预装修模块化建筑连接节点抗震性能[J]. 吉林大学学报(工学版), 2023, 53(2): 505-514.
[14] 王晓东,李宁静,李强. 高压脉冲放电破碎混凝土梁试验[J]. 吉林大学学报(工学版), 2023, 53(2): 496-504.
[15] 戴理朝,周亮,杨晓文,王磊. 基于Connector单元的锈蚀RC梁界面粘结性能细观数值模拟[J]. 吉林大学学报(工学版), 2023, 53(10): 2886-2896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!