吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 891-896.doi: 10.7964/jdxbgxb201304008

• 论文 • 上一篇    下一篇

集料水平向分布状态对沥青混合料劈裂试验影响数值模拟

彭勇1, 孙立军2   

  1. 1. 浙江大学 交通工程研究所,杭州 310058;
    2. 同济大学 道路与交通工程教育部重点实验室,上海 201804
  • 收稿日期:2012-04-10 出版日期:2013-07-01 发布日期:2013-07-01
  • 作者简介:彭勇(1976-),男,副教授,博士.研究方向:路面结构与路面材料.E-mail:ypeng@zju.edu.cn
  • 基金资助:

    浙江省自然科学基金项目(Y1080276);同济大学道路与交通工程教育部重点实验室开放基金项目(201101).

Numerical simulation of effect of horizontal aggregate distribution in asphalt mixtures on splitting test

PENG Yong1, SUN Li-jun2   

  1. 1. Institute of Transportation Engineering, Zhejiang University, Hangzhou 310058, China;
    2. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China
  • Received:2012-04-10 Online:2013-07-01 Published:2013-07-01

摘要:

为研究集料水平向分布状态对沥青混合料劈裂试验的影响,基于沥青混合料集料均匀性指标,通过在混合料水平截面不同方向上加载,采用有限元法数值模拟集料水平向分布状态对沥青混合料劈裂试验中最大应力值(平面主应力和水平拉应力)的影响,并加以试验验证。研究结果表明:集料水平向分布状态对沥青混合料劈裂试验中平均最大应力值影响不大,其间相关性不明显,但与最大应力值变异性间相关性却很显著。

关键词: 道路工程, 沥青混合料, 集料水平向分布状态, 劈裂试验, 数值模拟, 集料均匀性指标, 有限元法

Abstract:

The projective of this research is to investigate the effect of horizontal aggregate distribution in asphalt mixtures on splitting test. Based on the aggregate homogeneity index and through loading in different directions of the horizontal cross-section of asphalt mixtures, the effect of horizontal aggregate distribution on the maximum stresses (in-plane principal stress and tensile stress) of the splitting test was numerically simulated using Finite Element Method (FEM) and verified by real test. Results show that the effect of horizontal aggregate distribution on the maximum stresses of the splitting test is insignificant and there is no obvious correlation between them. However, the correlation between the horizontal aggregate distribution and the variation of the maximum stresses is significant.

Key words: road engineering, asphalt mixture, horizontal aggregate distribution, splitting test, numerical simulation, aggregate homogeneity index, finite element method(FEM)

中图分类号: 

  • U414

[1] American Association of State Highway and Transportation Official (AASHTO). Segregation: Causes and Cures for Hot Mix Asphalt[M]. Washington DC: AASHTO, 1997.

[2] Williams R C, Duncan G R, White T. Sources, measurement, and effects of segregated hot-mix asphalt pavement. Report FHWA-SA-96-016, Washington DC: Federal Highway Administration, 1996.

[3] Mcghee K K, Flintsch G W, Edgar D E León Izeppi. Using high-speed texture measurements to improve the uniformity of asphalt mixture. Charlottesville: Virginia Transportation Research Council, 2003.

[4] Yue Z Q, William B, Isabelle Morin. Application of digital image processing to quantitative study of asphalt concrete microstructure//Transportation Research Record 1492,Washington DC: TRB, 1995:53-60.

[5] US Department of Transportation. Simulation, imaging and mechanics of asphalt pavements. Virginia: Turner-Fairbanks Highway Research Center, 1998.

[6] Obaidat M T, Msaeid H R, Gharaybeh F, et al. An innovative digital image analysis approach to quantify the percentage of voids in mineral aggregates of bituminous mixtures[J]. Canadian Journal of Civil Engineering, 1998, 25:1041-1049.

[7] Wang L B, Lai J S. Quantify specific surface area of aggregates using an imaging technique//Washington DC: TRB, 1998.

[8] Kose S. Development of a virtual test procedure for Asphalt concrete. Madison: University of Wisconsin-Madison, 2002.

[9] Rousan T M. Characterization of aggregate shape properties using a computer automated system . College Station: Texas A & M University, 2004.

[10] Tashman L, Masad E, Peterson B, et al. Internal structure analysis of asphalt mixes to improve the simulation of superpave gyratory compaction to field conditions[J]. Journal of the Association of Asphalt Paving Technologists, 2001, 70: 605-645.

[11] Hunter A E, Airey G D, Collop A C. Aggregate orientation and segregation in laboratory compacted asphalt samples//Washington DC: TRB, 2004.

[12] Azari H, McCuen R, Stuart K. The effect of vertical inhomogeneity on compressive properties of asphalt mixtures[J]. Journal of the Association of Asphalt Paving Technologists, 2004, 73: 121-145.

[13] Azari H. Effect of aggregate inhomogeneity on mechanical properties of asphalt mixtures//Advanced Characterisation of Pavement and Soil Engineering Materials, 2007: 291-302.

[14] Azari H, McCuen R, Stuart K. Effect of radial inhomogeneity on shear properties of asphalt mixtures[J]. Journal of Materials in Civil Engineering,2005, 17 (1): 80-88.

[15] 蒯海东. 基于数字图象处理的HMA集料形状及分布特征研究. 南京:东南大学,2005. Kuai Hai-dong. Study of form and distribution characters for aggregrates in HMA based on digital image processing. Nanjing:Southeast University,2005.

[16] 吴文亮,李智,张肖宁. 用数字图像处理技术评价沥青混合料均匀性[J]. 吉林大学学报:工学版,2009,39(4):921-925. Wu Wen-liang, Li Zhi, Zhang Xiao-ning. Evaluation of asphalt mixture homogeneity with digital image processing technique[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(4): 921-925.

[17] 彭勇,孙立军,王元清,等. 数字图像处理在沥青混合料均匀性评价中的应用[J]. 吉林大学学报:工学版,2007,37(2):334-337. Peng Yong, Sun Li-jun, Wang Yuan-qing, et al. Application of digital image processing in evaluating homogeneity of asphalt mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(2): 334-337.

[18] Peng Y, Sun L J. Towards an index of asphalt mixture homogeneity[J]. Road Materials and Pavement Design, 2009, 10 (3): 545-567.

[19] Chang G K, Meegoda J N. Micro-mechanic model for temperature effects of hot mixture asphalt concrete//Transportation Research Record 1687, Washington DC: TRB, 1999: 95-103.

[20] Buttlar W G, You Z. Discrete element modeling of asphalt concrete: Microfabric approach//Transportation Research Record,Washington DC, 2001, 1757:111-118.

[21] Guddati M N, Feng Z, Kim R. Toward a micromechanics-based procedure to characterize fatigue performance of asphalt concrete//Transportation Research Record,Washington DC, 2002, 1789:121-128.

[22] Wang L B, Myers L A, Mohammad L N, et al. Micromechanics study on top-down cracking //Transportation Research Record, Washington DC, 2003, 1853: 121-133.

[23] Dai Q, Sadd M H. Parametric model study of microstructure effects on damage behavior of asphalt samples[J]. International Journal of Pavement Engineering, 2004, 5(1): 19-30.

[24] Dai Q, Sadd M H, Parameswaran V, et al. Prediction of damage behaviors in asphalt materials using a micromechanical finite-element model and image analysis[J]. Journal of Engineering Mechanics, 2005, 131(7): 668-677.

[25] Kim H, Buttlar W G. Micromechanical fracture modeling of asphalt mixture using the discrete element method[J]. Journal of the Association of Asphalt Paving Technologists, 2005, 74: 209-223.

[26] Sadd M H, Dai Q, Parameswaran V. Microstructural simulation of asphalt materials: Modeling and experimental studies[J]. Journal of Materials in Civil Engineering, 2004, 16(2): 107-115.

[27] Papagiannakis A T, Abbas A, Masad E. Micromechanical analysis of viscoelastic properties of asphalt concretes//Transportation Research Record 1789,Washington DC, 2002, 113-120.

[28] Li G, Li Y, Metcalf J B, et al. Elastic modulus prediction of asphalt concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(3): 236-241.

[29] Li Y, Metcalf J B. Two-step approach to prediction of asphalt concrete modulus from two-phase micromechanical models[J]. Journal of Materials in Civil Engineering, 2005, 17(4): 407-415.

[30] Collop A C, McDowell G R, Lee Y. Modelling the behaviour of an idealised asphalt mixture using the distinct element method//Washington DC: TRB, 2004.

[31] You Z P, Adhikari S, Dai Q L. Three-dimensional discrete element models for asphalt mixtures [J]. Journal of Engineering Mechanics, 2008, 134(12): 1053-1063.

[32] 王新飞. 沥青混合料细观结构的粘弹性力学及断裂力学数值分析. 杭州:浙江大学,2011. Wang Xin-fei. Numerical analysis of viscoelastic and fracture mechanics of asphalt mixture microstructure. Hangzhou: Zhejiang University, 2011.

[33] 彭勇,孙立军,石永久,等. 沥青混合料均匀性与路用性能指标的关系[J]. 同济大学学报:自然科学版,2008,36(4):488-492. Peng Yong, Sun Li-jun, Shi Yong-jiu, et al. Relationship between homogeneity and indices of asphalt pavement performance[J]. Journal of Tongji University (Natural Science), 2008, 36(4): 488-492.

[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[4] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[5] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[6] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[7] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[8] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[9] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[10] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[11] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[12] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[13] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[14] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[15] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[3] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[4] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[5] 陈思国, 姜旭, 王健, 刘衍珩, 邓伟文, 邓钧忆. 车载自组网与通用移动通信系统混杂网络技术[J]. 吉林大学学报(工学版), 2013, 43(03): 706 -710 .
[6] 孟超, 孙知信, 刘三民. 基于云计算的病毒多执行路径[J]. 吉林大学学报(工学版), 2013, 43(03): 718 -726 .
[7] 仙树, 郑锦, 路兴, 张世鹏. 基于内容转发模型的P2P流量识别算法[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .
[8] 吕源治, 王世刚, 俞珏琼, 王小雨, 李雪松. 基于柱透镜光栅的虚模式下一维集成成像显示特性[J]. 吉林大学学报(工学版), 2013, 43(03): 753 -757 .
[9] 王丹, 李阳, 年桂君, 王珂. 非均质度量掩蔽函数在空域水印中的应用[J]. 吉林大学学报(工学版), 2013, 43(03): 771 -775 .
[10] 冯琳函, 钱志鸿, 尚克诚, 朱爽. 基于IEEE802.15.4标准的改进型隐藏节点冲突避免策略[J]. 吉林大学学报(工学版), 2013, 43(03): 776 -780 .