吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 415-420.doi: 10.13229/j.cnki.jdxbgxb201402022
夏悦1,2, 李芳菲1,2, 蒋引珊1,2, 陈雪娇3
XIA Yue1,2, LI Fang-fei1,2, JIANG Yin-shan1,2, LI Xue-jiao3
摘要:
以钛酸四丁酯为钛源,磷酸为磷源,采用溶胶-凝胶法在天然硅藻土(Dt)表面进行负载,成功地合成了磷掺杂纳米TiO2-硅藻土复合光催化剂。采用XRD、FTIR、SEM和UV-Vis对P掺杂TiO2粉体和P-TiO2-硅藻土复合物进行表征,并通过可见光下降解甲基橙和亚甲基蓝来研究其光催化性能。实验表明,P原子成功掺杂到TiO2晶格中,掺杂后的P-TiO2晶粒尺寸小于TiO2,P的掺入可以提高晶型转变温度。负载P-TiO2并没有破坏硅藻土的原有形貌。P-TiO2和P-TiO2-硅藻土的UV-Vis光谱相对于纯TiO2均发生了红移并扩展到可见光范围内,说明这两种催化剂均具有一定的可见光性质。但是P-TiO2-硅藻土的吸收范围稍高于前者,可能是由于P-TiO2与多孔硅藻土之间存在相互作用。光催化实验结果表明,负载量为20%的P-TiO2-硅藻土具有出色的光催化效果。
中图分类号:
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.[2] Wang D S, Wang Y H, Li X Y, et al. Sunlight photocatalytic activity of polypyrrole-TiO2 nanocomposites prepared by 'in situ' method[J]. Catalysis Communications, 2008, 9(6): 1162-1166.[3] Yang K S, Dai Y, Huang B B. Understanding photocatalytic activity of S-and P-doped TiO2 under visible light from first-principles[J]. The Journal of Physical Chemistry C, 2007, 111(51): 18985-18994.[4] Li F F, Jiang Y S, Xia M S, et al. Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2[J]. The Journal of Physical Chemistry C, 2009, 113(42): 18134-18141.[5] Yu J C, Zhang L Z, Zheng J C, et al. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J]. Chemistry of Materials, 2003, 15(11): 2280-2286.[6] Shi Q, Yang D, Jiang Z Y, et al. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles[J]. Journal of Molecular Catalysis B-Enzymatic, 2006, 43(1-4): 44-48.[7] Xu Y M, Zheng W, Liu W P. Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 122(1): 57-60.[8] Kyotani T, Ma Z X, Tomita A. Template synthesis of novel porous carbons using various types of zeolites[J]. Carbon, 2003, 41(7): 1451-1459.[9] Bakandritsos A, Steriotis T, Petirdis D. High surface area montmorillonite-carbon composites and derived carbons[J]. Chemistry of Materials, 2004, 16(8): 1551-1559.[10] Nozawa M, Tanigawa K, Hosomi M, et al. Removal and decomposition of malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon[J]. Water Science and Technology, 2001, 44(9): 127-133.[11] Jia Y X, Han W, Xiong G X, et al. Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials[J]. Journal of Colloid and Interface Science, 2008, 323(2): 326-331.[12] Lin L, Lin W, Xie J L, et al. Photocatalytic properties of phosphor-doped titania nanoparticles[J]. Applied Catalysis B-Environmental, 2007, 75(1/2): 52-58.[13] Lv Y Y, Yu L S, Huang H Y, et al. Preparation, characterization of P-doped TiO2 nanoparticles and their excellent photocatalystic properties under the solar light irradiation[J]. Journal of Alloys and Compounds, 2009, 488(1): 314-319.[14] Yu H F. Photocatalytic abilities of gel-derived P-doped TiO2[J]. Journal of Physics and Chemistry of Solids, 2007, 68(4): 600-607.[15] Zheng R Y, Guo Y, Jin C, et al. Novel thermally stable phosphorus-doped TiO2 photocatalyst synthesized by hydrolysis of TiCl4[J]. Journal of Molecular Catalysis A: Chemical, 2010, 319(1/2): 46-51.[16] Yu J G, Yu H G, Cheng B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition[J]. The Journal of Physical Chemistry B, 2003, 107(50): 13871-13879.[17] Warren D S, McQuillan A J. Influence of adsorbed water on phonon and UV-induced IR absorptions of TiO2 photocatalytic particle films[J]. The Journal of Physical Chemistry B, 2004, 108(50): 19373-19379.[18] Samantaray S K, Parida K M. Effect of anions on the textural and catalytic activity of titania[J]. Journal of Materials Science, 2003, 38(9): 1835-1848.[19] Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chemical Reviews, 1993, 93(1): 341-357. |
[1] | 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810. |
[2] | 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530. |
[3] | 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152. |
[4] | 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160. |
[5] | 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834. |
[6] | 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844. |
[7] | 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479. |
[8] | 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228. |
[9] | 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833. |
[10] | 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841. |
[11] | 王辉, 周杰, 熊煜, 陶亚平, 向荣. 基于逆向工程的复杂曲面冲压件回弹补偿[J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847. |
[12] | 王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853. |
[13] | 邢海燕, 葛桦, 李思岐, 杨文光, 孙晓军. 基于模糊隶属度最大似然估计的焊缝隐性缺陷磁记忆信号识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860. |
[14] | 谷晓燕, 刘亚俊, 孙大千, 徐锋, 孟令山, 高帅. S355钢/6005A铝合金瞬间液相扩散连接接头组织与性能[J]. 吉林大学学报(工学版), 2017, 47(5): 1534-1541. |
[15] | 谷诤巍, 张文学, 吕萌萌, 王伟, 徐虹, 李欣. 宽翼边U型截面不锈钢型材拉弯成形缺陷控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170. |
|