吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 516-524.doi: 10.13229/j.cnki.jdxbgxb201402038

• 论文 • 上一篇    下一篇

实时解聚分析家庭能源消耗事件的基础设施仲裁传感新方法

周求湛1, 胡继康1, 刘萍萍2, 车遥1, 陈永志1   

  1. 1. 吉林大学 通信工程学院, 长春 130022;
    2. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2013-01-02 出版日期:2014-02-01 发布日期:2014-02-01
  • 作者简介:周求湛(1974- ),男,副教授,博士.研究方向:微弱信号检测.E-mail:zhouqz@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(60906034);吉林大学基本科研业务费项目(60481080).

New method of real-time disaggregation and analysis of residential resource consumption events using infrastructure-mediated sensing

ZHOU Qiu-zhan1, HU Ji-kang1, LIU Ping-ping2, CHE Yao1, CHEN Yong-zhi1   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130022, China;
    2. College of Computer Science and Technology, Jilin University, Changchun, 130022, China
  • Received:2013-01-02 Online:2014-02-01 Published:2014-02-01

摘要:

提出了一种全新的根据家庭中实时水电能源消耗事件的分析方法。首先设计了一套城市居民水电能源消耗的通用感知系统,采用基础设施仲裁传感技术,获取家庭中的水电消耗数据。其次,采用功率谱向量时间追赶算法和最近邻居分类算法,依据开关电源设备向电力线辐射的高频电磁干扰特性,实现了对用电设备的快速识别和分类;采用滑动窗技术和基于向量内积的模式识别方法,可以快速分类出用水设备。通过在实际家庭中的验证,本方法达到了95%的设备识别和分类精度。最后,可将分析和处理的结果通过以太网上传到云存储端。家庭水电能源消耗的解聚分析是完成对家庭能源的监控和居民行为分析的基础。

关键词: 信息处理技术, 居民行为分析, 水电事件感知, 能量监控, 基础设施仲裁传感

Abstract:

In order to analyze human activities accurately, a new analysis approach is proposed combining with real-time water and electrical events. First, applying infrastructure-mediated sensing technology, a system of sensing residential water and power consumption is designed to obtain the water and electrical usage data. Then, using the power spectrum vector chasing algorithm and k-Nearest Neighbor algorithm, working devices in the home can be recognized and classified according to the abundant of high electromagnetic interference noises generated during the switching of power supply devices. The fixtures in the home can be classified using sliding window technique and pattern recognition algorithm based on the inner product of vector. Via being deployed in real-houses, this approach successfully classifies consumption events in device-level with 95% accuracy. Finally, the analysis and post-process results can be transmitted to a clouding storage via internet. Disaggregated residential water and power consumption is the fundamental of energy monitoring and human activity analysis in a home.

Key words: information processing technology, human activities analysis, water and electrical events sensing, energy monitoring, infrastructure-mediated sensing

中图分类号: 

  • TN911.6

[1] Michael O'Grady, Gregory O'Hare. How smart is your city?[J]. Science, 2012, 335(6076): 1581-1582.

[2] Cook D J. How smart is your home?[J]. Science, 2012, 335(6076): 1579-1580.

[3] Lifton J, Feldmeie M, Ono Y, et al. A platform for ubiquitous sensor deployment in occupational and domestic environment[C]//USA:Proceeding of Information Processing in Sensor Networks, 2007: 119-127.

[4] Hart G W. Nonintrusive appliance load monitoring[J]. Processing of IEEE, 1992, 80 (12):1870-1891.

[5] Froehlich J, Larson E, Campbell T, et al. Hydrosence:infrastructure-mediated single-point sensing of whole-home water activity[C]//Orlando, FL, USA: Proceeding of the 11th International Conference on Ubiquitous Computing, ACM, 2009: 235-244.

[6] Gupta S, Reynolds M S, Patel S N. Electrisense: single-point sensing using EMI for electrical event detection and classification in the home[C]//Proceeding of 12th International Conference on Ubiquitous Computing, ACM, Copenhagen, 2010: 139-148.

[7] Switch mode power supply tutorial block doagerm, and basic theory of operation [EB/OL]http://www.smps.us/power-supply.html, 2012-09-10.

[8] Tapia E, Intille S, Larson K. Activity recognition in the home using simple and ubiquitous sensors[J]. Proceedings of the International Conference on Pervasive Computing, 2004:158-175.

[9] Fogarty J, Au C, Hudson S E. Sensing from the basement: a feasibility study of unobtrusive and low-cost home activity recognition[C]//Montreux: Proceedings of the ACM Symposium on User Interface Software and Technology, 2006: 91-100.

[10] Welch P. The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified period grams[J]. IEEE Transaction on Audio and Electro Acoustics. 1967, 15(2): 70-73.

[11] Zhang Fu-sheng, Geng Zhong-xing, Yuan Wei. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 160-164.

[12] Bhattacharya G, Ghosh K, Chowdhury A S. An affinity-based new local distance function and similarity measure for kNN algorithm[J]. Pattern Recognition Letters, 2011, 33 (3): 356-363.

[13] stermark R. A fuzzy vector valued KNN algorithm for automatic outlier detection[J]. Applied Soft Computing, 2009, (4):1263-1272.

[14] Liu W, Chawla S, Cieslak D, et al. A robust decision tree algorithm for imbalanced data sets[C]//Kuala Lumpur: In Proceedings of the Tenth SIAM International Conference on Data Mining, 2010: 766-777.

[15] Wu Fu-chao, Duan Fu-qing, Hu Zhan-yi, et al. A new linear algorithm for calibrating central catadioptric cameras[J]. Pattern Recognition, 2008, 41: 3166-3172.

[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!