吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 567-572.doi: 10.13229/j.cnki.jdxbgxb201402045

• 论文 • 上一篇    下一篇

羊肚菌胞外多糖快速估测方法

陈莉, 孙永海, 付天宇, 丁健峰   

  1. 吉林大学 生物与农业工程学院, 长春 130022
  • 收稿日期:2013-02-20 出版日期:2014-02-01 发布日期:2014-02-01
  • 通讯作者: 孙永海(1956- ),男,教授,博士生导师.研究方向:农产品智能检测与评价.E-mail:sunyh@jlu.edu.cn E-mail:sunyh@jlu.edu.cn
  • 作者简介:陈莉(1983- ),女,博士研究生.研究方向:农产品智能检测与评价.E-mail:flygirl1983@126.com
  • 基金资助:

    吉林省科技发展计划重点项目(20110247).

Method of rapid estimation of extracellular polysaccharide of Morchella Esculenta

CHEN Li, SUN Yong-hai, FU Tian-yu, DING Jian-feng   

  1. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
  • Received:2013-02-20 Online:2014-02-01 Published:2014-02-01

摘要:

针对羊肚菌深层发酵过程胞外多糖含量估测自动化关键技术问题,对发酵液的主要参数与胞外多糖相关性及其规律进行了分析,发现发酵液黏度、电导率与胞外多糖之间几乎不存在相关性。在0.01显著性水平下,发酵时间、发酵液浊度、残余还原糖与胞外多糖的相关性显著,相关系数均在0.7以上。在排除变量间的虚假相关后,只有发酵液浊度与胞外多糖的偏相关系数在0.8以上,可以认为发酵液浊度是描述胞外多糖的最佳参数。利用所获一元线性回归、二项式回归以及BP神经网络三种数学模型对胞外多糖含量进行的估测验证试验结果表明:BP神经网络模型的估测效果最好,估测方差仅为2.37×10-6

关键词: 食品科学技术, 胞外多糖, 快速估测, 羊肚菌深层发酵, BP神经网络

Abstract:

In order to rapidly estimate extracellular polysaccharide content in submerged fermentation process of Morchella Esculenta, relativities between the fermentation parameters and extracellular polysaccharide were analyzed. There is little relativity between viscidity or conductance in fermentation broth and extracellular polysaccharide. At 0.01 level of significance, the relationships of extracellular polysaccharide and fermentation time, turbidity in fermentation broth, residual reducing sugar are of perfect association that all the correlation coefficients are over 0.7. After false associations among the parameters are removed, only partial correlation coefficient of turbidity in fermentation broth and extracellular polysaccharide is above 0.8. So, turbidity in fermentation broth can been considered as the optimized characteristic parameter for extracellular polysaccharide. The three mathematic models by linear fitting, binomial regression, BP neural network were tested by estimation experiment of the extracellular polysaccharide content. The results show that the estimation by BP neural network is the best that the variance is only 2.37×10-6.

Key words: food science and technology, extracellular polysaccharide, rapid estimate, submerged fermentation of Morchella Esculenta, BP neural networks

中图分类号: 

  • TS207.3

[1] 孟庆虹, 张守义. 真菌多糖的研究进展[J].粮食与食品工业, 2003(3):42-44. Meng Qing-hong, Zhang Shou-yi. Research advancements of fungus polysaccharomyces[J].Cereal and Food Industry, 2003(3):42-44.

[2] 贾建会, 吕晓莲, 樊利青.深层发酵羊肚菌多糖的提取、分离及纯化研究[J].食品科学, 2002, 23(4):59-62. Jia Jian-hui, Lv Xiao-lian, Fan Li-qing. Studies on extraction, separation and purification of the submerged-fermentation Morchella polysacharide[J].Food Science, 2002, 23(4):59-62.

[3] 欧超, 王娣, 张兆轩, 等. 羊肚菌液体深层发酵条件[J].食品与生物技术学报, 2007, 26(2):80-86. Ou Chao, Wang Di, Zhang Zhao-xuan, et al. Study on liquid fermentation technology of morchella Esculenta[J].Journal of Food Science and Biotechnology, 2007, 26(2):80-86.

[4] 王莹, 孙永海, 朴美子, 等. 基于BP神经网络的羊肚菌液体发酵量化方法[J].食品与生物技术学报, 2009, 28(1):140-142. Wang Ying, Sun Yong-hai, Piao Mei-zi, et al. Quantified method for Morchella subnerged fermentation based on BP neural network[J].Journal of Food Science and Biotechnology, 2009, 28(1): 140-142.

[5] 武秋立, 安家彦.羊肚菌胞外多糖发酵动力学模型[J].南开大学学报:自然科学版, 2005, 38(1):43-48. Wu Qiu-li, An Jia-yan. Kinetic models for exopolysacharides of Morchella esculenta by fermentation[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis (Natu Sci Edi), 2005, 38(1): 43-48.

[6] 王莹, 朴美子, 孙永海. 基于遗传算法的羊肚菌液体发酵动力学模型的建立[J]. 生物工程学报, 2008, 24(8):1454-1457. Wang Ying, Piao Mei-zi, Sun Yong-hai. Genetic algorithm for Fermentation kinetics of submergedfermentation by Morchella[J].Chinese Journal of Biotechnology, 2008, 24(8):1454-1457.

[7] 许文涛, 张方方, 罗云波, 等. 荞麦水溶性多糖的分离纯化及其分子量的测定[J].食品科学, 2009, 30(13):22-24. Xu Wen-tao, Zhang Fang-fang, Luo Yun-bo, et al. Isolation and purification of water-soluble polysaccharide from common buckwheat(fagopyum esculentum)and determination of its Molecular weight[J].Food Science, 2009, 30(13): 22-24.

[8] 伦冠德. MATLAB曲线拟合工具箱在试验数据处理上的应用[J].拖拉机与农用运输车, 2006, 33(4):22-24. Lun Guan-de. MATLAB curve fitting toolbox in disposing of expermient data[J].Mechanical and Electrical Engineering Department, 2006, 33(4):22-24.

[9] Meng Xiang-yong, Zhang Min, Adhikari Benu. Predication of storage quality of fresh-cut green peppers using artificial neural network[J].International Journal of Food Science and Technology, 2012, 47(8): 1586-1592.

[10] Zhang L, Zhao H F, Wang L, et al Application of back-propagation neural network and generalized regression neural network to heat-Treatment technology of Nd-Fe-B alloys[C]//Procedings of the 2010 International Conference on Application of Mathematics and Physics, Nanjing, China, 2010.

[1] 刘东亮, 王秋爽. 基于NGSIM数据的车辆瞬时速度获取方法[J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[2] 王德军, 吕志超, 王启明, 张贤达, 王子健. 基于汽缸压力辨识的发动机失火故障诊断[J]. 吉林大学学报(工学版), 2017, 47(3): 917-923.
[3] 黄璇, 郭立红, 李姜, 于洋. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002.
[4] 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[5] 李寿涛, 田微, 郭鹏程, 马用学, 张浩, 王楠. 基于模糊自适应的BP神经网络动态行驶车辆车长测算[J]. 吉林大学学报(工学版), 2015, 45(6): 1881-1886.
[6] 高明亮, 于生宝, 郑建波, 徐畅, 张堃, 栾卉. PSBP在高密度电阻率法二维反演中的应用[J]. 吉林大学学报(工学版), 2015, 45(6): 2026-2033.
[7] 闫楚良, 郝云霄, 刘克格. 基于遗传算法优化的BP神经网络的材料疲劳寿命预测[J]. 吉林大学学报(工学版), 2014, 44(6): 1710-1715.
[8] 侯阿临, 廖庆, 靳志娟, 陈娟, 耿莹. 计算全息图的人工神经网络压缩算法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 21-24.
[9] 司建波, 杨芳, 郭蔚莹, 姚燕. 基于BP神经网络的两阶段疾病预测模型[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 481-484.
[10] 丁健峰, 孙永海, 付天宇, 谢高鹏. 响应曲面法优化羊肚菌富硒深层发酵条件[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 557-563.
[11] 刘静波, 安晓宁, 梁春玮, 王作昭, 王二雷, 张燕, 姜轶群. 微波提取鸡蛋黄中类胡萝卜素工艺的优化[J]. 吉林大学学报(工学版), 2013, 43(06): 1712-1718.
[12] 王改革, 郭立红, 段红, 刘逻, 王鹤淇. 基于萤火虫算法优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2013, 43(04): 1064-1069.
[13] 刘晶晶, 孙永海, 丁健峰, 孙钟雷. 玉米汁辨识中的传感器阵列优化[J]. 吉林大学学报(工学版), 2013, 43(02): 538-543.
[14] 徐彩娜, 殷涌光, 王二雷, 刘静波. 卵黄高磷蛋白及其磷酸肽稳定性和抗氧化性[J]. 吉林大学学报(工学版), 2013, 43(02): 544-549.
[15] 刘静波, 王菲, 张燕, 王二雷, 王作昭, 姜轶群. 蛋清源凝血酶抑制肽的纯化[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 466-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!