吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 95-100.doi: 10.13229/j.cnki.jdxbgxb201401017

• 论文 • 上一篇    下一篇

基于Bootstrap-Bayes的加工中心主轴可靠性建模

陈传海1, 杨兆军1, 陈菲1, 郝庆波1,2, 许彬彬1, 阚英男1   

  1. 1. 吉林大学 机械科学与工程学院, 长春 130022;
    2. 空军航空大学 力学系, 长春 130022
  • 收稿日期:2012-10-16 出版日期:2014-01-01 发布日期:2014-01-01
  • 通讯作者: 陈菲(1970-),女,副教授,博士.研究方向:数控机床可靠性设计.E-mail:chench_china@163.com E-mail:chench_china@163.com
  • 作者简介:陈传海(1983-),男,讲师,博士.研究方向:数控机床可靠性建模.E-mail:cchchina@foxmail.com
  • 基金资助:

    “高档数控机床与基础制造装备”国家科技重大专项项目(2010ZX04014-016).

Reliability modeling of machining center spindle based on Boosttrap-Bayes

CHEN Chuan-hai1, YANG Zhao-jun1, CHEN Fei1, HAO Qing-bo1,2, XU Bin-bin1, KAN Ying-nan1   

  1. 1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2. Department of Mechanics, Aviation University of Air Force, Changchun 130022, China
  • Received:2012-10-16 Online:2014-01-01 Published:2014-01-01

摘要:

针对采用常规Bayes方法对小样本加工中心主轴之类产品进行可靠性建模时与工程实际有较大差异的问题,提出了一种基于Bootstrap-Bayes的小样本可靠性建模方法:为减小先验分布的误差,应用Bootstrap抽样方法对研究对象相同制造环境下同类产品的可靠性模型进行再抽样,从而获得参数的先验分布;在计算后验分布过程中,利用马尔可夫链蒙特卡罗抽样方法,简化了计算,得到了研究对象的可靠性模型。以大样本下经典建模方法所得可靠性模型为基准,与利用Bootstrap-Bayes方法建立的可靠性模型和常规Bayes方法建立的可靠性模型进行比较,结果表明,基于Bootstrap-Bayes的可靠性建模方法所建模型的误差明显小于常规Bayes方法。

关键词: 机床, 数控机床, Bootstrap抽样, Bayes, 可靠性, 小样本

Abstract:

The reliability model established using traditional statistical method for the spindle in machining center with small sample size may be biased in the real case. Therefore, a modified reliability modeling method for small sample size was proposed using Bootstrap-Bayes approach. First, the reliability function of time between failures using empirical modeling method was established. Then the accurate of the parameters prior distribution of Bayes method was provided. This method improves the precision of prior distribution built by traditional empirical method. In order to calculate the posterior distribution of parameters, Monte Carlo simulation was developed. Finally, a real-world example of the spindle of one kind of machining center was presented using the proposed approach to show its potential application. The results show that the proposed method can provide an accurate reliability model for small sample failure data.

Key words: machine tool, numerical control machine tool, Bootstrap sampling, Bayes, reliability, small sample

中图分类号: 

  • TG659

[1] 杨兆军, 李小兵, 许彬彬, 等. 加工中心时间动态可靠性建模[J].机械工程学报, 2012, 48(2): 16-22. Yang Zhao-jun, Li Xiao-bing, Xu Bin-bin, et al. Time dynamic reliability modelling of machining center[J]. Journal of Mechanical Engineering, 2012, 48(2):16-22.

[2] 许彬彬, 杨兆军, 陈菲, 等. 非齐次泊松过程的数控机床可靠性建模[J].吉林大学学报:工学版, 2011, 41(增刊2): 210-214. Xu Bin-bin, Yang Zhao-jun, Chen Fei, et al. Reliability model of CNC machine tools based on non-homogenous Poisson process[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(Sup.2):210-214.

[3] 韩明. 产品无失效数据的综合处理[J].机械工程学报, 2003, 39(2): 129-132. Han Ming. Synthesized process for zero-failure data of the products[J]. Journal of Mechanical Engineering, 2003, 39(2): 129-132.

[4] Wu Hsien-chung. Fuzzy Bayesian system reliability assessment based on exponential distribution[J].Applied Mathematical Modeling, 2006, 30(6): 509-530.

[5] 范英, 田志成. 基于Bayes方法的小子样可靠性分析[J].机械强度, 2012, 34(2): 274-277. Fan Ying, Tian Zhi-cheng. Reliability analysis on small sample based on Bayes[J].Journal of Mechanical Strength, 2012, 34(2): 274-277.

[6] 倪中新, 费鹤良. 威布尔分布无失效数据的统计分析[J].应用数学学报, 2003, 26(3): 533-543. Ni Zhong-xin, Fei He-liang. Statistical analysis of the zero-failure data in Weibull distribution[J]. Acta Mathematicae Applicatae Sinica, 2003, 26(3):533-543.

[7] Dai Yi, Zhou Yun-fei, Jia Ya-zhou. Distribution of time between failures of machining center based on type I censored data[J]. Reliability Engineering and System Safety, 2003, 79(3): 377-379.

[8] Ramin Gholizadeh, Aliakbar Mastani Shirazi, Bahram Sadeghpour Gideh. Fuzzy Bayesian system reliability assessment based on prior two-parameter exponential distribution under different loss functions[J]. Software Testing, Verification and Reliability, 2012, 22(3): 203-217.

[9] Fan Tsai-hung, Chang Chia-chen. A Bayesian zero-failure reliability demonstration test of high quality electro-explosive devices[J]. Quality and Reliability Engineering International, 2009, 25(8): 913-920.

[10] 陈文华, 李奇志, 张为鄂, 等. 产品可靠性的Bootstrap区间估计方法[J].机械工程学报, 2003, 39(6): 106-109. Chen Wen-hua, Li Zhi-qi, Zhang Wei-e, et al. Method of Bootstrap interval estimation for product reliability[J]. Journal of Mechanical Engineering, 2003, 39(6): 106-109.

[11] Noren Niklas G, Orre Roland. Case based imprecision estimates for Bayes classifiers with the Bayesian Bootstrap[J]. Machine Learning, 2005, 58(1): 79-84.

[12] 李洪双. 小子样可靠性分析方法及应用研究[D].西安:西北工业大学, 2006. Li Hong-shuang. Reliability analysis of small sample and application research[D]. Xi'an: Northwestern Polytechnical University, 2006.

[13] 茆诗松. Bayes统计[M].北京: 中国统计出版社, 1999.

[14] Geman Stuart, Geman Donald. Stochastic Relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741.

[15] 汤银才, 侯道燕. 三参数Weibull分布参数的Bayes估计[J].系统科学与数学, 2009, 29(1): 109-115. Tang Ying-cai, Hou Dao-yan. Bayesian estimation of three-parameter Weibull distribution[J]. Journal of Systems Science and Mathematical Sciences, 2009, 29(1): 109-115.

[16] Soliman Ahmed A, Abd-Ellah Ahmed H, Abou-Elheggag Naser A, et al. Modified Weibull model: a Bayes study using MCMC approach based on progressive censoring data[J]. Reliability Engineering and System Safety, 2012, 100: 48-57.

[17] 王燕萍, 吕震宙. 一种基于Gibbs抽样的可靠性增长Bayes方法[J].西北工业大学学报, 2007, 25(6): 784-788. Wang Yan-ping, Lyu Zhen-zhou. Bayesian approach to reliability growth based on the Gibbs sampling[J]. Journal of Northwestern Polytechnical University, 2007, 25(6): 784-788.

[18] Madi Mohamed T. Bayesian inference for partially accelerated life tests using Gibbs sampling[J]. Microelectronics Reliability, 1997, 37(8): 1165-1168.

[1] 郑玉彬, 杨斌, 王晓峰, 申桂香, 赵宪卓, 秦猛猛. 基于威布尔分布的电主轴加速寿命试验时间设计[J]. 吉林大学学报(工学版), 2018, 48(3): 767-772.
[2] 于繁华, 刘仁云, 张义民, 张晓丽, 孙秋成. 机械零部件动态可靠性稳健优化设计的群智能算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1903-1908.
[3] 申桂香, 曾文彬, 张英芝, 吴茂坤, 郑玉彬. 最小故障率下数控组合机床平均维修时间确定[J]. 吉林大学学报(工学版), 2017, 47(5): 1519-1526.
[4] 吴娇蓉, 王宇沁, 魏明, 林彬. 路侧公交专用道设置长度对公交线路运行可靠性的影响[J]. 吉林大学学报(工学版), 2017, 47(1): 82-91.
[5] 曲兴田, 赵永兵, 刘海忠, 王昕, 杨旭, 陈行德. 串并混联机床几何误差建模与实验[J]. 吉林大学学报(工学版), 2017, 47(1): 137-144.
[6] 张英芝, 刘津彤, 申桂香, 戚晓艳, 龙哲. 基于故障相关性分析的数控机床系统可靠性建模[J]. 吉林大学学报(工学版), 2017, 47(1): 169-173.
[7] 孟广伟, 冯昕宇, 周立明, 李锋. 基于降维算法的结构可靠性分析[J]. 吉林大学学报(工学版), 2017, 47(1): 174-179.
[8] 孟书, 申桂香, 张英芝, 龙哲, 曾文彬. 基于时间相关的数控机床系统组件更换时间[J]. 吉林大学学报(工学版), 2016, 46(6): 1946-1952.
[9] 李洪洲, 杨兆军, 许彬彬, 王彦鹍, 贾玉辉, 侯超. 数控机床可靠性评估试验周期设计[J]. 吉林大学学报(工学版), 2016, 46(5): 1520-1527.
[10] 赵丁选, 王倩, 张祝新. 基于层次分析法的可拓学理论对舰载直升机可靠性的评估[J]. 吉林大学学报(工学版), 2016, 46(5): 1528-1531.
[11] 于繁华, 刘仁云, 张义民, 孙秋成, 张晓丽. 机械结构动态可靠性设计的智能计算方法[J]. 吉林大学学报(工学版), 2016, 46(4): 1269-1275.
[12] 潘义勇, 马健霄, 孙璐. 基于可靠度的动态随机交通网络耗时最优路径[J]. 吉林大学学报(工学版), 2016, 46(2): 412-417.
[13] 王健健, 冯平法, 张建富, 吴志军, 张国斌, 闫培龙. 卡盘定心精度建模及其保持特性与修复方法[J]. 吉林大学学报(工学版), 2016, 46(2): 487-493.
[14] 刘玉梅, 赵聪聪, 熊明烨, 郭文翠, 张志远. 基于物元模型的高速轨道车辆传动系可靠性评价[J]. 吉林大学学报(工学版), 2015, 45(4): 1063-1068.
[15] 徐光明, 王英姿, 史峰, 秦进. 基于出行时间可靠性的支路网络均衡分析[J]. 吉林大学学报(工学版), 2015, 45(3): 755-760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!