吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 847-853.doi: 10.13229/j.cnki.jdxbgxb201403043

• 论文 • 上一篇    下一篇

基于动态差分阈值的脉搏信号峰值检测算法

张爱华1,2,王平1,2,丑永新1,2   

  1. 1.兰州理工大学 电气工程与信息工程学院, 兰州730050;
    2.甘肃省科技厅 甘肃省工业过程先进控制重点实验室, 兰州730050
  • 收稿日期:2012-12-17 出版日期:2014-03-01 发布日期:2014-03-01
  • 作者简介:张爱华(1964),女,教授,博士生导师.研究方向:生物医学信号检测与处理.E-mail:lutzhangah@163.com
  • 基金资助:
    国家自然科学基金项目(81360229);高等学校博士学科点专项科研基金项目(20116201110002);甘肃省自然科学基金项目(1014RJZA013).

Peak detection of pulse signal based on dynamic difference threshold

ZHANG Ai-hua1,2, WANG Ping1,2,CHOU Yong-xin1,2   

  1. 1.College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
    2.Gansu Provincial Sci. & Tech. Department, Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou 730050, China
  • Received:2012-12-17 Online:2014-03-01 Published:2014-03-01

摘要: 针对传统幅度阈值法在脉搏信号峰值检测中所存在的问题,同时为了避免脉搏信号中的干扰段对信号分析所带来的风险,提出了基于动态阈值的脉搏信号峰值检测方法。采用动态差分阈值提取脉搏信号峰值,并在其提取过程中依据阈值适时应用符号化信号近似匹配的方法检测脉搏信号干扰段。通过对视觉疲劳试验过程中采集的脉搏信号进行分析,结果表明:该方法能够准确地提取脉搏主波位置和脉搏峰值,效果明显优于传统幅度阈值法。

关键词: 信息处理技术, 脉搏信号, 幅度阈值, 干扰段检测, 动态差分阈值

Abstract: Using traditional pulse analysis method could bring serious influence on the accuracy and reliability of pulse signal feature detection. In order to overcome the shortcoming of the traditional threshold algorithm in peak detection of pulse signal, also to avoid the risk caused by the interference segment of pulse signal on signal analysis, a dynamic threshold method was presented to extract the peak of pulse wave. The symbolic aggregate approximation algorithm was timely used according to the difference and amplitude threshold to detect interference segment in the process. The pulse signals collected in the experiment of video display terminal fatigue were analyzed by this method. The results show that the proposed method can accurately extract the pulse peak and the position. It is obviously superior to the traditional method.

Key words: information processing, pulse signal, amplitude threshold, interference detection, dynamic difference threshold

中图分类号: 

  • TN911.73
[1] 黄世林,孙明异. 中医脉象研究[M]. 北京:人民卫生出版社,1991.
[2] Shu Jian-jun, Sun Yu-guang. Developing classification indices for Chinese pulse diagnosis[J]. Complementary Therapies in Medicine, 2007, 15(3): 190-198.
[3] 行鸿彦,许瑞庆,王长松. 基于经验模态分解的脉搏信号特征研究[J]. 仪器仪表学报, 2009, 30(3):596-602.
Xing Hong-yan, Xu Rui-qing, Wang Chang-song. Pulse signal feature research based on empirical mode decomposition[J]. Chinese Journal of Scientific Instrument, 2009, 30(3):596-602.
[4] 张爱华,王业泰,赵治月. 视屏显示终端视觉疲劳对脉搏信号的影响[J]. 中国工业医学杂志, 2010,23(3):166-169.
Zhang Ai-hua, Wang Ye-tai, Zhao Zhi-yue. Effects of visual fatigue induced by VDT on pulse signal[J]. Chinese J Ind Med, 2010, 23(3): 166-169.
[5] Zhang Pei-yong,Wang Hui-yan. A framework for automatic time-domain characteristic parameters extraction of human pulse signal[J]. EURASIP Journal on Advances in Signal Processing, 2008, 9(10): 1382-1389.
[6] 王海涛,吕沙里,郑慧君,等. 容积脉搏波序列的异常模式检测[J]. 仪器仪表学报, 2009, 30(11): 2285-2290.
Wang Hai-tao, Lü Sha-li, Zheng Hui-jun, et al. Detection of abnormal pattern of volume pulse time series[J]. Chinese Journal of Scientific Instrument, 2009, 30(11): 2285-2290.
[7] 郭维,刘光达,张晓枫,等. 基于多特征参数综合分析脉搏波信号失真度算法的实现[J]. 吉林大学学报:工学版, 2012,42(4):1044-1048.
Guo Wei, Liu Guang-da, Zhang Xiao-feng, et al. Realization of algorithm of abnormal pulse wave signal detection based on associate factor of pulse features[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(4): 1044-1048.
[8] 张爱华,丑永新. 动态脉搏信号的采集与处理[J]. 中国医疗器械杂志,2012, 36(2): 79-84.
Zhang Ai-hua, Chou Yong-xin. Dynamic pulse signal acquisition and processing[J]. Chinese Journal of Medical Instrumentation, 2012, 36(2): 79-84.
[9] Jessica L, Eamonn K, Stefano L, et al. A symbolic representation of time series, with implications for streaming algorithms[C]∥Proc of the 8th ACM SIGMOD Workshop on Research Issue in Data Mining and Knowledge Discovery, San Diego, California, USA, 2003: 2-11.
[10] Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Journal of Knowledge and Information Systems, 2000, 3(3): 263-286.
[11] Loh W K, Kim S W. Index interpolation: An approach for subsequence matching supporting normalization transform in time-series databases[C]∥Proceedings of the 9th International Conference on Information and Knowledge Management. New York, USA, 2000: 480-487.
[12] 罗志昌,张松,杨益民. 脉搏波的工程分析与临床应用[M]. 北京:科学出版社, 2005.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!