吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1283-1289.doi: 10.7964/jdxbgxb201405010

• • 上一篇    下一篇

基于形态仿生的轿车升阻特性的数值模拟

田丽梅1, 商震2, 胡国梁3, 李楠3   

  1. 1.吉林大学 工程仿生教育部重点实验室,长春 130022;
    2.吉林大学 汽车工程学院,长春 130022;
    3江苏大学 汽车与交通工程学院, 江苏 镇江 212013
  • 收稿日期:2013-12-22 出版日期:2014-09-01 发布日期:2014-09-01
  • 作者简介:田丽梅(1973), 女, 副教授, 博士.研究方向:仿生功能表面应用.E-mail:lmtian@jlu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目(51105168,51205160); 吉林省高技术产业化示范推进项目(jfggj20111084); 长春市重大科技攻关专项项目(13KG33).

Numerical simulation of the lift and drag characteristics of passenger car based on morphological bionics

TIAN Li-mei1, SHANG Zhen2, HU Guo-liang3, LI Nan3   

  1. 1.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022,China;
    2.College of Automobile Engineering, Jilin University, Changchun 130022, China;
    3.School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
  • Received:2013-12-22 Online:2014-09-01 Published:2014-09-01

摘要: 受鱼类利用中央鳍/对鳍对流体介质产生扰动来增加运动稳定性的启发,本文在轿车尾部增加功能类似中央鳍/对鳍的扰流板,称之为方案一;针对其阻力增加,在方案一的基础上,在车后窗及汽车后备箱表面添加棱纹形态仿生功能表面,称之为方案二。利用数值模拟方法,对上述两种方案及原车模型在高速行驶状况下进行仿真分析,结果表明:方案一升力系数由原车的-0.06455降为-0.1516,后轮附着力增加,提高了轿车的操纵稳定性;方案二较好地梳理了尾部气流,延迟了气流的分离,与方案一比较,减阻率达到4.938%。

关键词: 工程仿生学, 形态仿生, 扰流板, 棱纹, 减阻

Abstract: A fish uses its central fin to interfere with fluid to improve its stability. Inspired by such phenomenon, a car spoiler with similar function is installed on the car trunk lid, which is called the first scheme. Because of drag increasing of the first scheme, a riblet bionic functional surface is mounted on the rear window and trunk lid, which is called the second scheme. Under high speed, the above two schemes and the original car model are numerically analyzed. The results show that, compared with the original car model, the aerodynamic lift coefficient of the first scheme is reduced from -0.06455 to -0.1516, which means that the adhesion of the rear wheel is increased, thus, the car's handling stability is improved. Compared with the first scheme, the drag coefficient of the second scheme is reduced by 4.938% through combed fluid flow and delayed separation of boundary layer.

Key words: bionic engineering, morphology bionic, car spoiler, riblet, drag reduction

中图分类号: 

  • U461.6
[1] 龙钢. 某车型车身造型设计及空气动力学仿真研究[D]. 哈尔滨:哈尔滨工业大学汽车工程学院, 2010.Long Gang. Design of a car body styling and research on aerodynamic simulation[D]. Harbin: Colege of Automobile Engineering,Harbin Institute of Technology, 2010.
[2] 黄永辉. 基于CFD的汽车外流场数值模拟及车身造型优化[D]. 湖南:湖南大学机械工程学院, 2011.Huang Yong-hui. Numerical simulation and model optimization for car body base on CFD[D]. Hu'nan:College of Mechanical Manufacturing and Automation, Hu'nan University, 2011.
[3] 李锦,陈佳星. 某轿跑车的空气动力学性能仿真分析[J]. 上海工程技术大学学报, 2009,23(3):194-197.Li Jin, Chen Jia-xing. Simulation of vehicle aerodynamics performance[J]. Journal of Shanghai University of Engineering Science, 2009,23(3):194-197.
[4] 傅立敏.汽车空气动力学数值计算[M].北京: 北京理工大学出版社, 2001.
[5] 王波, 罗际, 朱睿. 汽车造型设计的线型分析方法[J]. 汽车工程, 2010,32(6):470-476.Wang Bo, Luo Ji, Zhu Rui. Line-style analysis technique for car styling[J]. Automotive Engineering, 2010,32(6):470-476.
[6] Webb P W. Form and function in fish swimming[J]. Scientific American,1984,251(1):58-68.
[7] Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion[J]. IEEE J Oceanic Eng,1999, 24(2): 237-252.
[8] Webb P W. The Biology of Fish Swimming[M]. Cambridge, UK: Cambridge University Press, 1994:45-62.
[9] Blake R W. Influence of pectoral fin shape on thrust and drag in labriform locomotion[J]. J Zool Lond,1981,194(1):53-66.
[10] 田丽梅,任露泉,韩志武,等. 仿生非光滑表面脱附与减阻技术在工程上的应用[J]. 农业机械学报,2005, 36(3): 138-142.Tian Li-mei, Ren Lu-quan, Han Zhi-wu,et al. Applications of anti-adhesion and anti-resistance of biomimetic non-smooth surface in engineering[J]. Transactions of The Chinese Society of Agricultural Machinery,2005, 36(3): 138-142.
[11] 黄德斌, 邓先和, 王杨君. 沟槽面管道湍流减阻的数值模拟研究[J].水动力学研究与进展,2005,20(1):102-105.Huang De-bin, Deng Xian-he, Wang Yang-jun. Numerical simulation study of turbulent drag reduction over ribelt surfaces of tubes[J]. Journal of Hydrodynamics,2005,20(1):102-105.
[12] 丛茜, 封云, 任露泉. 仿生非光滑沟槽形状对减阻效果的影响[J]. 水动力学研究与进展,2006,21(2):232-238.Cong Qian, Feng Yun, Ren Lu-quan. Affecting of riblets shape of nonsmooth surface on drag reduction[J]. Journal of Hydrodynamics, 2006,21(2):232-238.
[13] Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an idealized model of shark skin[J]. Experiments in Fluids, 2000(28):403-412.
[14] Han M, Lim H C, Jang Y G, et al. Fabrication of a micro-riblet film and drag reduction effects on curved objects[C]∥The 12th International Conference on Solid State Sensors,Actuators and Microsystems,Boston,2003:396-399.
[15] Nitschke P. Experimentelle untersuchung der turbulenten strmung in glatten und lngsgerillten rohren. Max-Planck- institutfür strmungsforschung, gttingen, Report 3/1983 Transl: experimental investigation of the turbulent flow in smooth and longitudinally grooved tubes[R]. NASA TM 77480 ,1984.
[16] Walsh M J. Drag reduction of V-groove and transverse curvature riblets[C]∥Progress in Sstronautics and Seronautics, AIAA, New York, 1980: 168-184.
[17] Walsh M J. Riblets[C]∥Progress in Astronautics and Aeronautics, AIAA, Washington,1990:203-262.
[18] 李育斌, 乔治德, 王志岐. 运七飞机外表面沟纹膜减阻的实验研究[J]. 气动实验与测量控制,1995, 9(3):21-26.Li Yu-bin,Qiao Zhi-de,Wang Zhi-qi.An experimental research of drag reduclion using ribilets for the Y-7 airplane[J]. Aerodynamic Experiment and Measurment & Control,1995, 9(3):21-26.
[19] 张英朝. 汽车空气动力学数值模拟技术[M]. 北京:北京大学出版社, 2011.
[20] 王晓明,赵又群.车轮旋转对汽车流场影响的模拟研究[J]. 汽车科技, 2009(4):40-43.Wang Xiao-ming, Zhao You-qun. Research on influence of rotating wheels on flow field around vehicle[J]. Auto Mobile Science & Technology, 2009(4):40-43.
[21] 金益锋, 谷正气, 容江磊,等. 汽车凹坑型非光滑表面减阻特性的分析与优化[J]. 汽车工程,2013,35(1):41-45.Jin Yi-feng, Gu Zheng-qi, Rong Jiang-lei, et al. Analysis and optimization on the drag reduction characteristics of car with pit-type non-smooth surface[J]. Automotive Engineering,2013,35(1):41-45.
[22] Lindsey C C. Form, Function and Locomotory Habits in Fish[M].New York: Academic Press,1978:1-100.
[23] 田丽梅,任露泉,刘庆平,等.仿生非光滑旋成体表面减阻特性数值模拟[J]. 吉林大学学报:工学版, 2006,36(6):908-913.Tian Li-mei, Ren Lu-quan, Liu Qing-ping, et al. Numerical simulation on drag reduction characteristic around bodies of revolution with bionic non-smooth surface[J]. Journal of Jilin University (Engineering and Technology Edition), 2006,36(6):908-913.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[4] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[5] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[6] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[7] 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[8] 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[9] 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[10] 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[11] 赵刚, 李照远, 赵华兴, 饶宇, 李芳, 刘文博. 外旋立式射流减阻测试平台研制及实验[J]. 吉林大学学报(工学版), 2016, 46(4): 1175-1181.
[12] 梁云虹, 任露泉. 人类生活及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384.
[13] 钱志辉, 苗怀彬, 任雷, 任露泉. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862.
[14] 邹猛, 于用军, 张荣荣, 魏灿刚, 王会霞. 仿牛角结构薄壁管吸能特性仿真分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868.
[15] 杨卓娟, 王庆成, 高英, 门玉琢, 杨晓东. 不同溶液对荷叶润湿性能的影响[J]. 吉林大学学报(工学版), 2015, 45(6): 1869-1873.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!