吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1197-1202.doi: 10.13229/j.cnki.jdxbgxb201404045

• 论文 • 上一篇    下一篇

与高精度单点匹配式定位算法

李学军, 杨晟, 李振举, 杨阿华, 刘涛   

  1. 中国人民解放军装备学院 信息装备系, 北京101416
  • 收稿日期:2013-01-14 出版日期:2014-07-01 发布日期:2014-07-01
  • 通讯作者: 杨晟(1985-), 男, 博士研究生.研究方向:遥感图像处理, 计算机应用.E-mail:1019_yangsheng@sina.com
  • 作者简介:李学军(1967-), 男, 教授, 博士.研究方向:遥感图像处理, 数字地球.E-mail:lixuejun@vip.163.com
  • 基金资助:

    武器装备预研项目;国防预研基金项目

Quick extracting of marking cross points and accurate locating algorithm by single-point-mode matching

LI Xue-jun, YANG Sheng, LI Zhen-ju, YANG A-hua, LIU Tao   

  1. Department of Information Equipment, The Academy of Equipment of PLA, Beijing 101416, China
  • Received:2013-01-14 Online:2014-07-01 Published:2014-07-01

摘要:

在简要分析目前标识点自动提取技术难点的基础上, 提出邻域灰度重心连线交点和累积量判断的“+”交叉点快速探测与单点匹配式高精度定位算法。试验结果表明, 算法能够很好地适应噪声环境、光照变化、图像旋转、采样误差、一定程度视角变化和透视变形等影响, 达到0.01~0.05像素级的定位精度。

关键词: 信息处理技术, 特征提取, 标识识别, 标识点定位, 特征匹配, 视觉测量

Abstract:

The key problems in current methods of automatic extracting of marking cross points are analyzed. Then, a quick detection of the cross points based on the intersection of the barycenters and the accumulation volume is proposed, and a accurate locating algorithm by single-point-mode matching is designed to ensure the accuracy. Experimental results show that the algorithm is robust to noise, rotation, resampling error, illumination variations, a certain degree of view variation and perspective distortion. The locating accuracy of 0.01 to 0.05 pixels is obtained.

Key words: information processing technology, feature extracting, marking point recognition, point feature location, feature matching, photogrammetry

中图分类号: 

  • TN917

[1] Li Jing, Allinson Nigel M. A comprehensive review of current local features for computer vision[J]. Neurocomputing, 2008, 71:1771-1787.
[2] 石晶欣, 朱小锋, 孙明磊, 等. 基于SUSAN和Hough变换的直线边缘亚像素定位方法[J]. 光电工程, 2008, 35(6):89-94.
Shi Jing-xin, Zhu Xiao-feng, Sun Ming-lei, et al. Method of straight edge detection with sub-pixel localization based on SUSAN and Hough transform[J]. Opto-Electronic Engineering, 2008, 35(6):89-94.
[3] Lars Kruger, Christian Wohler. Accurate chequerboard corner localisation for camera calibration[J]. Pattern Recognition Letters, 2011, 32:1428-1435.
[4] Cem Unsalan. A model based approach for pose estimation and rotation invariant object matching[J]. Pattern Recognition Letters, 2007, 28:49-57.
[5] Lucchese L, Mitra S. Using saddle points for subpixel feature detection in camera calibration targets[C]∥Asia-Pacific Conf on Circuits and Systems, Piscataway, N J Bali, Indonesia, 2002:191-195.
[6] Kong Fan-zhi, Zhang Xing-zhou, Wang Yi-zhong, et al. Fast matching location algorithm based on mixed moment for wire bonding[C]∥International Conference on Optical Instruments and Technology, SPIE, Beijing, China, 2008.
[7] 陈洪波, 王强, 徐晓蓉, 等. 用改进的Hough变换检测交通标志图像的直线特征[J]. 光学精密工程, 2009, 17(5): 1111-1118.
Chen Hong-bo, Wang Qiang, Xu Xiao-rong, et al. Line detection in traffic sign image based on improved Hough transform[J]. Optics and Precision Engineering, 2009, 17(5): 1111-1118.
[8] 朱院娟, 郭斯羽, 朱志杰, 等. 结合LTS和Hough变换的直线检测算法[J]. 计算机工程, 2012, 38(14):206-210. Zhu Yuan-juan, Guo Si-yu, Zhu Zhi-jie, et al. Line detection algorithm combining LTS with Hough transform[J]. Computer Engineering, 2012, 38(14): 206-210.
[9] Pradip Mainali, Qiong Yang, Gauthier Lafruit, et al. Robust low complexity corner detector[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(4): 435-445.
[10] 杨博文, 张丽艳, 叶南. 面向大视场视觉测量的摄像机标定技术[J].光学学报, 2012, 32(9):159-167.
Yang Bo-wen, Zhang Li-yan, Ye Nan. Camera calibration technique of wide-area vision measurement[J]. Acta Optica Sinica, 2012, 32(9):159-167.
[11] Thevenaz Philippe, Ruttimann Urs E, Unser Michael. A pyramid approach to subpixel registration based on intensity[J]. IEEE Transactions on Image Processing, 1998, 7(1):27-42.
[12] Shinichi Satoh. Simple low-dimensional features approximating NCC-based image matching[J]. Pattern Recognition Letters, 2011, 32:1902-1911.

[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[12] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[13] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[14] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[15] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!