吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1987-1993.doi: 10.13229/j.cnki.jdxbgxb201506036

• • 上一篇    下一篇

新的闭式通用浮雕变换解算法在三维表面检测中的应用

林欣堂1, 李艳东2, 吴攀超1   

  1. 1.哈尔滨工程大学 自动化学院,哈尔滨 150001;
    2.齐齐哈尔大学 计算机与控制工程学院,齐齐哈尔 161001
  • 收稿日期:2014-04-08 出版日期:2015-11-01 发布日期:2015-11-01
  • 作者简介:林欣堂(1982-),男,博士研究生.研究方向:计算机视觉三维重建.E-mail:work_lxt@126.com
  • 基金资助:
    国家自然科学基金青年基金项目(61100103)

Novel closed-form GBR solution in application of three-dimensional surface detection

LIN Xin-tang1, LI Yan-dong2, WU Pan-chao1   

  1. 1.College of Automation, Harbin Engineering University, Harbin 150001,China;
    2. Computer and Control Engineering, Qiqihar University, Qiqihar 161001,China
  • Received:2014-04-08 Online:2015-11-01 Published:2015-11-01

摘要: 使用光度立体视觉法对物体表面形状进行检测时,往往需要解决通用浮雕变换(Generalized bas-relief, GBR)中参数解算及含有镜面、阴影等干扰的非朗伯目标表面这两个主要问题。针对非标定光度立体视觉中GBR参数的解算问题,提出了一种基于局部极大灰度值点的闭式解算法。与已有GBR解算方法相比,本文提出的算法只需要进行二元二次方程组的闭式计算,无需寻优或迭代过程,在计算速度及精度上有较大提高。对于非朗伯表面问题本文主要采用分割方法,还引入了主要成分分析法进一步去除干扰,使本文提出的闭式解算法能够满足使用条件。最后通过对实物目标的三维检测验证了本文算法的高效性。

关键词: 信息处理技术, 三维重建, 非标定光源, 光度立体视觉

Abstract: In object surface detection using photometric stereo algorithm, two main issues need to be solved; unknown Generalized Bas-Relief (GBR) parameters and surface containing mirror point, shadows and other interference. To solve incalibrated photometric stereo, a novel closed-form algorithm based on local maxima points is proposed to solve GBR parameters. The algorithm, which only solves group of dual quadratic equation without optimization or iterative process, greatly improves the speed and accuracy compared with the existing GBR solutions. To solve non-Lambertian surface issue, image segment and PCA technology are used to segment and remove interference to ensure the algorithm satisfying the application conditions. Higher accuracy and efficiency are proved by experiments.

Key words: information processing technology, 3D reconstruction, non-calibrated light source, photometric stereo

中图分类号: 

  • TP391.4
[1] Woodham R. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering,1980,19(1):139-144.
[2] Barsky S, Petrou M. The 4-source photometric stereo method for three-dimensional surfaces in the presence of highlights and shadows[J]. PAMI,2003,25(10):1239-1252.
[3] Wolff L B, Boult T E. Constraining object features using a polarization reflectance model[J]. PAMI,1991,13(7):635-657.
[4] Tan P, Mallick S P, Quan L,et al. Isotropy, reciprocity and the generalized bas-relief ambiguity[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN,2007:1-8.
[5] Mukaigawa Y, Ishii Y, Shakunaga T. Analysis of photometric factors based on photometric linearization[J]. Journal of the Optical Society of America,2007,24(10):3326-3334.
[6] Miyazaki D, Hara K, Ikeuchi K. Median photometric stereo as applied to the segonko tumulus and museum objects[J]. International Journal of Computer Vision,2010,86(2-3):229-242.
[7] Wu L, Ganesh A, Shi B, et al. Robust photometric stereo via low-rank matrix completion and recovery[C]∥Lecture Notes in Computer Science,Queenstown,New Zealand,2011,6494:703-717.
[8] Wu T P, Tang C K. Photometric stereo via expectation maximization[J]. IEEE Trans Pattern Anal Mach Intell,2010,32(3):546-560.
[9] Lin Z, Chen M, Wu L, et al. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[DB/OL].[2014-02-07].http://arxiv.org/pdf/1009.5055.pdf.
[10] Ward G J. Measuring and modeling anisotropic reflection[C]∥Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA,1992:265-272.
[11] Lensch H,Kautz J,Goesele M,et al. Image-based reconstruction of spatial appearance and geometric detail[J]. ACM Transactions on Graphics,2003,22(2):234-257.
[12] Goldman D B, Curless B, Hertzmann A, et al. Shape and spatially-varying BRDFs from photometric stereo[J]. Pattern Analysis and Machine Intelligence,2010,32(6):1060-1071.
[13] Zickler T, Belhumeur P, Kriegman D. Helmholtz stereopsis:exploiting reciprocity for surface reconstruction[J]. IJCV,2003,49(2-3):1215-1227.
[14] Chandraker M,Bai J M,Ramamoorthi R.On differential photometric reconstruction for unknown, isotropic BRDFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(12):2941-2955.
[15] Wöhler C, d'Angelo P. Stereo image analysis of non-Lambertian surfaces[J]. International Journal of Computer Vision,2009,81(2):529-540.
[16] Belhumeur P N, Kriegman D J, Yuille A L. The bas-relief ambiguity[J]. International Journal of Computer Vision,1999,35(1):33-44.
[17] Kato Y, Horiuchi T, Tominaga S. Estimation of multiple light sources from specular highlights[C]∥21st International Conference on Pattern Recognition,Tsukuba,2012:2033-2086.
[18] Lagger P, Fua P. Retrieving multiple light sources in the presence of specular reflections and texture[J]. Computer Vision and Image Understanding,2008,111(2):207-218.
[19] Alldrin N G, Mallick S P, Kriegman D. Resolving the generalized bas-relief ambiguity by entropy minimization[C]∥IEEE Conference on Computer Vision and Pattern Recognition,Minneapolis, MN,2007:1-7.
[20] Shi B, Matsushita Y, Wei Y, et al. Self-calibrating photometric stereo[C]∥2010 IEEE Conference on Computer Vision and Pattern Recognition,San Francisco,CA,2010,1118-1125.
[21] 吴仑,王涌天,刘越. 一种鲁棒的基于光度立体视觉的表面重建方法[J].自动化学报,2013,39(8):1-10.
Wu Lun, Wang Yong-tian,Liu Yue. A robust approach based on photometric stereo for surface reconstruction[J]. Acta Automatica Sinica,2013,39(8):1-10.
[22] Wright J, Ganesh A, Rao S, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization[C]∥In proceedings of Neural Information Processing Systems (NIPS),Vancouver B C,Canada,2009:2080-2088.
[23] Yuille A,Snow D. Shape and albedo from multiple images using integrability[C]∥Computer Vision and Pattern Recognition, San Juan,1997:158-164.
[24] Simchony T, Chellappa R, Shao M. Direct analytical methods for solving poisson equations in computer vision problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(5):435-446.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 林金花, 王延杰, 王璐, 姚禹. 全局相机姿态优化下的快速表面重建[J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[12] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[13] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[14] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[15] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!