吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1987-1993.doi: 10.13229/j.cnki.jdxbgxb201506036
林欣堂1, 李艳东2, 吴攀超1
LIN Xin-tang1, LI Yan-dong2, WU Pan-chao1
摘要: 使用光度立体视觉法对物体表面形状进行检测时,往往需要解决通用浮雕变换(Generalized bas-relief, GBR)中参数解算及含有镜面、阴影等干扰的非朗伯目标表面这两个主要问题。针对非标定光度立体视觉中GBR参数的解算问题,提出了一种基于局部极大灰度值点的闭式解算法。与已有GBR解算方法相比,本文提出的算法只需要进行二元二次方程组的闭式计算,无需寻优或迭代过程,在计算速度及精度上有较大提高。对于非朗伯表面问题本文主要采用分割方法,还引入了主要成分分析法进一步去除干扰,使本文提出的闭式解算法能够满足使用条件。最后通过对实物目标的三维检测验证了本文算法的高效性。
中图分类号:
[1] Woodham R. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering,1980,19(1):139-144. [2] Barsky S, Petrou M. The 4-source photometric stereo method for three-dimensional surfaces in the presence of highlights and shadows[J]. PAMI,2003,25(10):1239-1252. [3] Wolff L B, Boult T E. Constraining object features using a polarization reflectance model[J]. PAMI,1991,13(7):635-657. [4] Tan P, Mallick S P, Quan L,et al. Isotropy, reciprocity and the generalized bas-relief ambiguity[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN,2007:1-8. [5] Mukaigawa Y, Ishii Y, Shakunaga T. Analysis of photometric factors based on photometric linearization[J]. Journal of the Optical Society of America,2007,24(10):3326-3334. [6] Miyazaki D, Hara K, Ikeuchi K. Median photometric stereo as applied to the segonko tumulus and museum objects[J]. International Journal of Computer Vision,2010,86(2-3):229-242. [7] Wu L, Ganesh A, Shi B, et al. Robust photometric stereo via low-rank matrix completion and recovery[C]∥Lecture Notes in Computer Science,Queenstown,New Zealand,2011,6494:703-717. [8] Wu T P, Tang C K. Photometric stereo via expectation maximization[J]. IEEE Trans Pattern Anal Mach Intell,2010,32(3):546-560. [9] Lin Z, Chen M, Wu L, et al. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[DB/OL].[2014-02-07].http://arxiv.org/pdf/1009.5055.pdf. [10] Ward G J. Measuring and modeling anisotropic reflection[C]∥Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA,1992:265-272. [11] Lensch H,Kautz J,Goesele M,et al. Image-based reconstruction of spatial appearance and geometric detail[J]. ACM Transactions on Graphics,2003,22(2):234-257. [12] Goldman D B, Curless B, Hertzmann A, et al. Shape and spatially-varying BRDFs from photometric stereo[J]. Pattern Analysis and Machine Intelligence,2010,32(6):1060-1071. [13] Zickler T, Belhumeur P, Kriegman D. Helmholtz stereopsis:exploiting reciprocity for surface reconstruction[J]. IJCV,2003,49(2-3):1215-1227. [14] Chandraker M,Bai J M,Ramamoorthi R.On differential photometric reconstruction for unknown, isotropic BRDFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(12):2941-2955. [15] Wöhler C, d'Angelo P. Stereo image analysis of non-Lambertian surfaces[J]. International Journal of Computer Vision,2009,81(2):529-540. [16] Belhumeur P N, Kriegman D J, Yuille A L. The bas-relief ambiguity[J]. International Journal of Computer Vision,1999,35(1):33-44. [17] Kato Y, Horiuchi T, Tominaga S. Estimation of multiple light sources from specular highlights[C]∥21st International Conference on Pattern Recognition,Tsukuba,2012:2033-2086. [18] Lagger P, Fua P. Retrieving multiple light sources in the presence of specular reflections and texture[J]. Computer Vision and Image Understanding,2008,111(2):207-218. [19] Alldrin N G, Mallick S P, Kriegman D. Resolving the generalized bas-relief ambiguity by entropy minimization[C]∥IEEE Conference on Computer Vision and Pattern Recognition,Minneapolis, MN,2007:1-7. [20] Shi B, Matsushita Y, Wei Y, et al. Self-calibrating photometric stereo[C]∥2010 IEEE Conference on Computer Vision and Pattern Recognition,San Francisco,CA,2010,1118-1125. [21] 吴仑,王涌天,刘越. 一种鲁棒的基于光度立体视觉的表面重建方法[J].自动化学报,2013,39(8):1-10. Wu Lun, Wang Yong-tian,Liu Yue. A robust approach based on photometric stereo for surface reconstruction[J]. Acta Automatica Sinica,2013,39(8):1-10. [22] Wright J, Ganesh A, Rao S, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization[C]∥In proceedings of Neural Information Processing Systems (NIPS),Vancouver B C,Canada,2009:2080-2088. [23] Yuille A,Snow D. Shape and albedo from multiple images using integrability[C]∥Computer Vision and Pattern Recognition, San Juan,1997:158-164. [24] Simchony T, Chellappa R, Shao M. Direct analytical methods for solving poisson equations in computer vision problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(5):435-446. |
[1] | 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894. |
[2] | 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903. |
[3] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[4] | 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916. |
[5] | 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924. |
[6] | 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930. |
[7] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[8] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
[9] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[10] | 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[11] | 林金花, 王延杰, 王璐, 姚禹. 全局相机姿态优化下的快速表面重建[J]. 吉林大学学报(工学版), 2018, 48(3): 909-918. |
[12] | 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[13] | 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[14] | 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506. |
[15] | 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
|