吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 2056-2061.doi: 10.13229/j.cnki.jdxbgxb201506046

• • 上一篇    下一篇

稳健的多跳频信号跟踪方法

尚佳栋, 王祖林, 周丽娜, 杨蓝   

  1. 北京航空航天大学 电子信息工程学院,北京 100191
  • 收稿日期:2014-03-28 出版日期:2015-11-01 发布日期:2015-11-01
  • 通讯作者: 王祖林(1965-),男,教授,博士生导师.研究方向:通信信号处理.E-mail:wzulin@vip.sina.com
  • 作者简介:尚佳栋(1987-),男,博士研究生.研究方向:通信对抗.E-mail:shangjiadong456@163.com
  • 基金资助:
    国家自然科学基金项目(61071070)

Robust tracking method for multiple frequency-hopping signals

SHANG Jia-dong, WANG Zu-lin, ZHOU Li-na, YANG Lan   

  1. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
  • Received:2014-03-28 Online:2015-11-01 Published:2015-11-01

摘要: 首先,采用t分布取代高斯分布来描述噪声,对信号的稀疏贝叶斯模型进行修正,减弱模型对脉冲噪声异常值的敏感性。然后,推导出一种多向量变分稀疏贝叶斯学习算法来求解修正模型,利用多个阵元的数据重构信号稀疏系数,提高了重构精度、改善了方法的跟踪性能。最后,设计试验对跟踪方法的性能进行仿真验证。试验结果表明,该方法在脉冲噪声下具有良好的稳健性和精确性。

关键词: 信息处理技术, 跳频信号跟踪, 脉冲噪声, t分布, 变分贝叶斯学习

Abstract: A robust tracking method for multiple frequency-hopping signals is presented. First, the measurement noise is modeled using the t distribution. Then, a novel Bayesian probability model is proposed to describe the multiple Frequency-Hopping (FH) signals tracking problem, such that the influence of the impulsive noise on the tracking performance can be attenuated efficiently. Finally, a Multiple Variational Sparse Bayesian Learning (M-VSBL) algorithm is derived for the proposed Bayesian model to estimate the hopping frequencies, directions of arrival and detect the hopping times. Simulation results demonstrate the robustness and accuracy of the proposed method under impulsive noise.

Key words: information processing, frequency-hopping signals tracking, impulsive noise, t distribution, variational Bayesian learning

中图分类号: 

  • TN911.72
[1] Glisic S, Nikolic Z, Milosevic N, et al. Advanced frequency hopping modulation for spread spectrum WLAN[J]. IEEE Journal on Selected Areas in Communications,2000,18(1):16-29.
[2] Liu X, Sidiropoulos N D, Swami A. Blind high-resolution localization and tracking of multiple frequency hopped signals[J]. IEEE Transaction on Signal Processing,2002,50(4):889-900.
[3] Liu Zhang-meng, Huang Zhi-tao, Zhou Yi-yu. Hopping instants detection and frequency tracking of FH signals with single or multiple channels[J]. IET Communications,2012,6(1):84-89.
[4] Sha Zhi-chao, Liu Zhang-meng, Huang Zhi-tao. Online hop timing detection and frequency estimation of multiple FH signals[J]. ETRI Journal,2013,35(5):748-756.
[5] 王丰华,沙志超,刘章孟,等. 基于贝叶斯稀疏学习的多跳频信号频率跟踪方法[J]. 电子与信息学报,2013,35(6):1395-1399.
Wang Feng-hua, Sha Zhi-chao, Liu Zhang-meng, et al. A frequency tracking method for multiple frequency-hopping signals based on sparse Bayesian learning[J]. Journal of Electronic & Information Technology,2013,35(6):1395-1399.
[6] Zimmermann M, Dostert K. Analysis and modeling of impulsive noise in broad-band powerline communications[J]. IEEE Transactions on Electromagnetic Compatibility,2002,44(1):249-258.
[7] Maronna R A, Martin R D, Yohai V J. Robust statistics: theory and methods[M]. New York: John Wiely & Sons,2006.
[8] Pham D S, Venkatesh S. Improved image recovery from compressed data contaminated with impulsive noise[J]. IEEE Transactions on Image Processing,2012,21(1):397-405.
[9] Wipf D P, Rao B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing,2007,55(7):3704-3716.
[10] Lange K L, Little R J A, Taylorb J M G. Robust statistical modeling using the t distribution[J]. Journal of the American Statistical Association,1989,84(408):881-896.
[11] Bishop C M, Tipping M E. Variational relevance vector machines[C]∥Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence,Menlo Park, CA, USA,2000:46-53.
[12] 陈坤,田华,何晶,等. 一种基于Huber函数的康塔方位稳健估计算法[J]. 空军工程大学学报:自然科学版,2013,14(6):18-22.
Chen Kun,Tian Hua,He Jing,et al. A robust estimation algorithm of TACAN azimuth based on Huber function[J]. Journal of Air Force Engineering University(Natural Science Edition),2013,14(6):18-22.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!