吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1892-1899.doi: 10.13229/j.cnki.jdxbgxb201606018

• • 上一篇    下一篇

柴油机微粒捕集器非对称孔道内流场和压降特性模拟

李志军1, 王楠1, 张立强2, 黄群锦1, 魏所库2, 张彦科1   

  1. 1.天津大学 内燃机燃烧学国家重点实验室,天津 300072;
    2.天津市圣威科技发展有限公司,天津 300132
  • 收稿日期:2015-06-22 出版日期:2016-11-20 发布日期:2016-11-20
  • 作者简介:李志军(1962-),男,教授,博士生导师.研究方向:内燃机燃烧与排放控制.E-mail:zhijunli@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(51276128); 科技部中欧中小企业节能减排发展专项基金项目(SQ2013ZOA100012)

Numerical simulation for flow and pressure drop characteristics in asymmetrical channels of diesel particulate filter

LI Zhi-jun1, WANG Nan1, ZHANG Li-qiang2, HUANG Qun-jin1, WEI Suo-ku2, ZHANG Yan-ke1   

  1. 1.State Key Laboratory of Engine Combustion,Tianjin University,Tianjin 300072,China;
    2.Tianjin Shengwei Development of Science Co.,Ltd.,Tianjin 300132,China
  • Received:2015-06-22 Online:2016-11-20 Published:2016-11-20

摘要: 采用Fluent建立了柴油机微粒捕集器(DPF)非对称孔道的三维模型,计算了孔道内的流动和压降特性,分析了DPF内碳烟微粒的沉积过程,比较了不同壁面渗透率和碳载量下对称孔道与非对称孔道中的压降特性。研究结果表明:进口孔道速度沿轴向先增大后减小,出口孔道速度沿轴向逐渐减小;进口孔道静压沿轴向先减小后增大,出口孔道静压沿轴向逐渐减小;碳烟微粒总是先在孔道的后端沉积,随着碳载量增大,碳烟微粒沿孔道轴向分布逐渐趋向于均匀;绝对碳载量系数大于0.3时,非对称孔道相对于对称孔道具有较小的压降;进、出口孔道比例越大,压降受排气流量的影响越大。

关键词: 动力机械工程, 柴油机微粒捕集器, 非对称孔道, 流场, 压降

Abstract: The 3D model of a Diesel Particulate Filter (DPF) with asymmetrical channels was established in Fluent. Based on numerical model, the fluid flow and pressure drop characteristics were simulated, the soot loading process was analyzed, and the pressure drops in asymmetrical channels and symmetrical channels were compared. The results show that, along the inlet channels, the flow velocity magnitude increases at first and then decreases, while the static pressure decreases first and then increases. Along the outlet channels the flow velocity increases while the static pressure decreases. At the beginning of soot loading process, larger amount of soot loading is found in the downstream half of the channel. As the soot loading increase, the distribution of soot along the axial direction becomes uniform. The pressure drop in the asymmetrical channels is lower than that in the symmetrical channels. The coefficient of the absolute soot loading of the asymmetrical channels is above 0.3. As the inlet-to-outlet ratio increases, the influence of the inlet mass flow rate on the pressure drop becomes more significant.

Key words: power machinery and engineering, diesel particulate filter(DPF), asymmetrical channel, flow, pressure drop

中图分类号: 

  • TK421.5
[1] 唐蛟,李国祥,王志坚,等. DPF碳载量模型的建立及试验[J]. 内燃机学报,2015,33(1):51-57.
Tang Jiao, Li Guo-xiang, Wang Zhi-jian, et al. Construction and experiment of DPF soot loading model[J]. Transactions of CSICE,2015,3(1):51-57.
[2] 王丹,刘忠长,王忠恕,等. 柴油机微粒捕集器缸内次后喷主动再生方法[J]. 吉林大学学报:工学版,2012,42(3):551-556.
Wang Dan, Liu Zhong-chang, Wang Zhong-shu,et al. Diesel particulate filter active regeneration by in-cylinder late post injection[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(3):551-556.
[3] Yamamoto K,Sakai T. Simulation of continuously regenerating trap with catalyzed DPF[J]. Catalysis Today,2015,242:357-362.
[4] Piscaglia F, Onorati A, Rutland C J,et al. Multi-dimensional modeling of the soot depositi-on mechanism in diesel particulate filters[J]. SAE International Journal of Fuels and Lubricants,2009,1(1):210-230.
[5] Bouteiller B, Bardon S, Briot A, et al. One dimensional backpressure model for asymmetrical cells DPF[C]∥SAE Paper, 2007-01-0045.
[6] Basu S, Henrichsen M, Tandon P, et al. Filtration efficiency and pressure drop performance of ceramic partial wall flow diesel particulate filters[C]∥SAE Paper,2013-01-9072.
[7] Piscaglia F, Rutland C J, Foster D E. Development of a CFD model to study the hydrodynamic characteristics and the soot deposition mechanism on the porous wall of a diesel particulate filter[C]∥SAE Paper,2005-01-0963.
[8] 龚金科,赖天贵,董喜俊,等. 车用柴油机微粒捕集器流场的数值模拟与分析[J]. 汽车工程,2006,28(2):129-133.
Gong Jin-ke, Lai Tian-gui, Dong Xi-jun, et al. Numerical simulation and analysis of the flow-field in a diesel particulate trap[J]. Automotive Engineering,2006,28(2):129-133.
[9] Zelenka P, Telford C, Pye D, et al.Development of a full-flow burner DPF system for heavyduty diesel engines[C]∥SAE Paper,2002-01-2787.
[10] Konstandopoulos A G, Skaperdas E, Masoudi M. Inertial contributions to the pressure drop of diesel particulate filters[C]∥SAE Paper, 2001-01-0909.
[11] Choi S, Oh K C, Lee C B. The effects of filter porosity and flow conditions on soot deposition/oxidation and pressure drop in particulate filters[J]. Energy,2014,77:327-337.
[12] Zhang X, Tennison P, Ruona W. 3D Numerical study of pressure loss characteristics and filtration efficiency through a frontal unplugged DPF[C]∥SAE Paper,2010-01-0538.
[13] 孟忠伟,宋蔷. 柴油机颗粒捕集器内颗粒层不均匀分布的数值研究[J]. 西华大学学报:自然科学版,2011,30(1):1-4.
Meng Zhong-wei, Song Qiang. Numerical Investigation into the non-uniform soot layer distribution in a diesel particle filter[J]. Journal of Xihua University(Natural Science),2011,30(1):1-4.
[14] Masoudi M. Hydrodynamics of diesel particulate filters[C]∥SAE Paper,2002-01-1016.
[15] Bollerhoff T, Markomanolakis I, Koltsakis G. Filtration and regeneration modeling for particulate filters with inhomogeneous wall structure[J]. Catalysis Today,2012,188(1):24-31.
[1] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[2] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[3] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[4] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[5] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[6] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[7] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[8] 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[9] 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
[10] 卫海桥, 裴自刚, 冯登全, 潘家营, 潘明章. 压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
[11] 李志军, 何丽, 姜瑞, 申博玺, 孔祥金, 刘世宇. 柴油机微粒捕集器灰分分布对其压降的影响评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766.
[12] 郭亮, 杨文昭, 王云开, 孙万臣, 程鹏, 李国良. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1767-1774.
[13] 虞浏, 刘忠长, 刘江唯, 杜宏飞, 许允. 直喷汽油机喷雾粒径特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1482-1488.
[14] 刘忠长, 腾鹏坤, 田径, 许允, 亓升林, 于凯波. 二级增压柴油机旁通阀调节特性[J]. 吉林大学学报(工学版), 2017, 47(3): 796-803.
[15] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[3] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[4] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[5] 陈思国, 姜旭, 王健, 刘衍珩, 邓伟文, 邓钧忆. 车载自组网与通用移动通信系统混杂网络技术[J]. 吉林大学学报(工学版), 2013, 43(03): 706 -710 .
[6] 孟超, 孙知信, 刘三民. 基于云计算的病毒多执行路径[J]. 吉林大学学报(工学版), 2013, 43(03): 718 -726 .
[7] 仙树, 郑锦, 路兴, 张世鹏. 基于内容转发模型的P2P流量识别算法[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .
[8] 吕源治, 王世刚, 俞珏琼, 王小雨, 李雪松. 基于柱透镜光栅的虚模式下一维集成成像显示特性[J]. 吉林大学学报(工学版), 2013, 43(03): 753 -757 .
[9] 王丹, 李阳, 年桂君, 王珂. 非均质度量掩蔽函数在空域水印中的应用[J]. 吉林大学学报(工学版), 2013, 43(03): 771 -775 .
[10] 冯琳函, 钱志鸿, 尚克诚, 朱爽. 基于IEEE802.15.4标准的改进型隐藏节点冲突避免策略[J]. 吉林大学学报(工学版), 2013, 43(03): 776 -780 .