吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 191-198.doi: 10.13229/j.cnki.jdxbgxb201701029

• 论文 • 上一篇    下一篇

双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理

徐虹1, 刘亚楠1, 于婷1, 谷诤巍1, 李湘吉2, 张志强1   

  1. 1.吉林大学 材料科学与工程学院,长春130022;
    2.吉林大学 辊锻工艺研究所,长春 130022
  • 收稿日期:2015-09-08 出版日期:2017-01-20 发布日期:2017-01-20
  • 通讯作者: 谷诤巍(1970-),男,教授,博士.研究方向:轻量化材料成形.E-mail:gzweii@163.com
  • 作者简介:徐虹(1972-),女,副教授,博士.研究方向:轻量化材料组织和性能及成形控制.E-mail:xh@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51205162,51275203); 吉林省科技发展计划项目(20130102021JC); 吉林大学2015年大学生创新创业训练计划国家级培育项目(2015430451).

Inelastic recovery behavior and microscopic mechanism of high strength DP780 steel during cyclic loading-unloading

XU Hong1, LIU Ya-nan1, YU Ting1, GU Zheng-wei1, LI Xiang-ji2, ZHANG Zhi-qiang1   

  1. 1.College of Materials Science and Engineering, Jilin University, Changchun 130022, China;
    2.Roll Forging Research Institute, Jilin University, Changchun 130022, China
  • Received:2015-09-08 Online:2017-01-20 Published:2017-01-20

摘要: 采用连续循环加载-卸载拉伸试验法研究了DP780的非弹性回复行为,确定了DP780在循环加载-卸载中应变回复的组成和比例。建立了卸载模量与塑性应变的数学模型。结合数值模拟和试验进行了模型验证。结果表明:DP780钢的平面各向异性不明显;由于卸载和重新加载循环非线性,卸载和重新加载轨迹构成了封闭环;卸载模量随着预应变的增大先快速下降,随后缓慢下降,在预应变达到6%后逐渐趋于稳定,卸载弹性模量降低17%;卸载总应变回复包括弹性部分和非弹性部分,并且后者所占比例高达11%。采用扫描电镜(SEM)和透射电镜(TEM)揭示了DP780非弹性回复的微观机理:塑性变形和奥氏体相变导致的位错密度增加,马氏体阻碍位错移动,造成大量的位错塞积,使可动位错发生弯曲,位错线长度增加,附加了弹性变形,导致了显著的非弹性回复行为。将得到的模型代入有限元模拟中,提高了模拟回弹的精度,使模具的回弹补偿更准确。

关键词: 材料合成与加工工艺, DP780钢, 弹性模量, 封闭环, 非弹性回复, 位错塞积

Abstract: The inelastic recovery behavior of DP780 steel was studied in continuous cyclic loading-unloading tensile tests. The composition of springback and the percentage of inelastic strain recovery of the steel were determined. Then, a mathematical model of unloading modulus and plastic strain was proposed. The model was verified by numerical simulation and experiment. It is shown that the plane anisotropy of DP780 steel is not obvious. The unloading and loading paths constitute a closed loop, which is formed due to the nonlinearity of the elastic modulus in the unloading and reloading cycles. With the increase of the pre-strain, the elastic modulus decreases rapidly, which then increases slowly and gradually tends to be stable after the pre-strain reaches 6%, the unloading elastic modulus decreases by 17%. The total unloading strain recovery is composed of elastic strain recovery and inelastic strain recovery, and the inelastic strain recovery can reach as high as 11% of the total strain recovery. The microstructures of DP780 steel were detected by SEM and TEM, and the microscopic mechanism of the inelastic recovery was revealed. It is shown that the plastic deformation and austenitic phase transformation cause the increase of dislocation density; the martensite dislocation moving obstacles lead to a large amount of dislocation pile-up and the movable dislocation bending, increasing the length of the dislocation line and additional elastic deformation. This results in significant inelastic recovery behavior. Integrating the model to the finite element simulation improves the accuracy of simulated springback and the mold springback compensation is more accurate.

Key words: materials synthesis and processing technology, DP780 steel, elastic modulus, closed loop, inelastic recovery, dislocation pile-up

中图分类号: 

  • TG386
[1] 张璐. 高强钢回弹预测中材料模型的适用性研究及回弹补偿的自动实现[D]. 上海: 上海交通大学材料科学与工程学院, 2012.
Zhang Lu. Effects of material models on springback predictions and compensations in stamping advanced high-strength steels(AHSS)[D]. Shanghai:College of Materials Science and Technology, Shanghai Jiao Tong University,2012.
[2] Lee Jin-woo, Lee Jeong-Yeon, Barlat Frédéric, et al. Extension of quasi-plastic-elastic approach to incorporate complex plastic flow behavior-application to springback of advanced high-strength steels[J]. International Journal of Plasticity, 2013, 45:140-159.
[3] Gan Wei, Babu S S, Kapustka Nick, et al. Microstructural effects on the springback of advanced high-strength steel[J]. Metallurgical and Materials Transactions A, 2006, 37(11): 3221-3231.
[4] Lia Xue-chun, Yang Yu-ying, Wang Yong-zhi, et al. Effect of the material-hardening mode on the springback simulation accuracy of V-free bending[J]. Journal of Materials Processing Technology, 2002, 123(2): 209-211.
[5] Luo Li-min, Ghosh Amit K. Elastic and inelastic recovery after plastic deformation of DQSK steel sheet[J]. Journal of Engineering Materials and Technology, 2003, 125(3): 237-246.
[6] Zhang S Q, Li S J, Jia M T, et al. Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior[J]. Scripta Materialia, 2009, 60(8): 733-736.
[7] Kim H J, Kim C M, Barlat F, et al. Nonlinear elastic behaviors of low and high strength steels in unloading and reloading[J]. Materials Science & Engineering A, 2013, 562:161-171.
[8] Sun L, Wagoner R H. Proportional and non-proportional hardening behavior of dual-phase steels[J]. International Journal of Plasticity, 2013, 45:174-187.
[9] Cleveland R M, Ghosh A K. Inelastic effects on springback in metals[J]. International Journal of Plasticity, 2002, 18(5-6):769-785.
[10] Abdel-Karim Mohammad. Effect of elastic modulus variation during plastic deformation on uniaxial and multiaxial ratchetting simulations[J]. European Journal of Mechanics A: Solids, 2011, 30(1): 11-21.
[11] Morestin Fabrice, Boivin Maurice. On the necessity of taking into account the variation in the Young modulus with plastic strain in elastic-plastic software[J]. Nuclear Engineering and Design, 1996, 162(1): 107-116.
[12] Yu Hai-yan. Variation of elastic modulus during plastic deformation and its influence on springback[J]. Materials and Design, 2009, 30(3): 846-850.
[13] 余海燕, 鲍立, 高云凯. 相变诱发塑性钢板的非弹性回复回复行为及其对回弹的影响[J]. 机械工程学报, 2010, 46(18): 46-50.
Yu Hai-yan,Bao Li,Gao Yun-kai. Inelastic recovery behavior of transformation-induced plasticity steels and its influence on springback[J]. Journal of Mechanical Engineering,2010,46(18):46-50.
[14] 庄京彪,刘迪辉, 李光耀. 基于包辛格效应的回弹仿真分析[J]. 机械工程学报, 2013, 49(22): 84-90.
Zhuang Jing-biao,Liu Di-hui,Li Guang-yao. Analysis of springback simulation based on Bauschinger effect[J]. Journal of Mechanical Engineering,2013,49(22):84-90
[15] 房威. 包辛格效应和卸载特性[J]. 材料开发与应用, 1994, 9(2): 19-22.
Fang Wei. Basinger effect and unloading characteristics[J]. Development and Application of Materials,1994,9(2):19-22.
[16] Wagoner Robert H, Lim Ho-jun, Lee Myoung-gyu. Advanced Issues in springback[J]. International Journal of Plasticity, 2013, 45:3-20.
[17] 牛枫,赵爱民,赵征志,等. 铬对超高强冷轧双相钢相变和组织性能的影响[J]. 钢铁研究学报,2010,22(7):47-50.
Niu Feng,Zhao Ai-min,Zhao Zheng-zhi,et al. Effects of Si and Cr on microstructure and mechanical properties of ultra high strength dual-phase steel[J]. Iron and Steel,2010,22(7):47-50.
[1] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[2] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[3] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[4] 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[5] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[6] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[7] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[8] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[9] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[10] 王辉, 周杰, 熊煜, 陶亚平, 向荣. 基于逆向工程的复杂曲面冲压件回弹补偿[J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[11] 王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[12] 邢海燕, 葛桦, 李思岐, 杨文光, 孙晓军. 基于模糊隶属度最大似然估计的焊缝隐性缺陷磁记忆信号识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[13] 谷晓燕, 刘亚俊, 孙大千, 徐锋, 孟令山, 高帅. S355钢/6005A铝合金瞬间液相扩散连接接头组织与性能[J]. 吉林大学学报(工学版), 2017, 47(5): 1534-1541.
[14] 谷诤巍, 张文学, 吕萌萌, 王伟, 徐虹, 李欣. 宽翼边U型截面不锈钢型材拉弯成形缺陷控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170.
[15] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋雨来,刘耀辉,朱先勇,王素环,于思荣. 钕对AZ91镁合金组织及机械性能的影响[J]. 吉林大学学报(工学版), 2006, 36(03): 289 -0293 .
[2] 张志强, 金文明, 杨慎华, 赵勇, 郑祺峰. 连杆裂解加工力参数数值分析[J]. 吉林大学学报(工学版), 2009, 39(04): 959 -963 .
[3] 宋雨来, 刘耀辉, 朱先勇, 王文琴. Ho对AZ91镁合金腐蚀行为的影响[J]. 吉林大学学报(工学版), 2011, 41(02): 366 -0370 .
[4] 张志强, 贾晓飞, 赵勇, 李湘吉. 高强度硼钢淬火界面热交换系数的实验与模拟[J]. 吉林大学学报(工学版), 2015, 45(4): 1195 -1199 .