吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1195-1199.doi: 10.13229/j.cnki.jdxbgxb201504025

• • 上一篇    下一篇

高强度硼钢淬火界面热交换系数的实验与模拟

张志强1, 贾晓飞1, 赵勇2, 李湘吉2   

  1. 1.吉林大学 材料科学与工程学院,长春 130022;
    2.吉林大学 辊锻工艺研究所,长春 130022
  • 收稿日期:2014-02-26 出版日期:2015-07-01 发布日期:2015-07-01
  • 作者简介:张志强(1977-),男,副教授,博士.研究方向:高强度钢板冲压成形.E-mail:zhangzq@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51205162,51275203)

Experiment and simulation on quenching interface heat transfer coefficient of high-strength boron steel

ZHANG Zhi-qiang1, JIA Xiao-fei1, ZHAO Yong2, LI Xiang-ji2   

  1. 1.College of Materials Science and Engineering, Jilin University, Changchun 130022,China;
    2.Roll Forging Institute, Jilin University, Changchun 130022, China
  • Received:2014-02-26 Online:2015-07-01 Published:2015-07-01

摘要: 通过测量硼钢B1500HS淬火过程中板料和模具的温度变化曲线,结合有限元分析及反传热模型获得淬火过程中板料与模具间的界面热交换系数(IHTC)与温度的关系。结果表明:板料温度从770 ℃下降到200 ℃,IHTC的变化范围在1970~3960 W/(m2·K)之间。随着板料温度的降低,IHTC随之降低,但由于材料在410 ℃时发生奥氏体向马氏体的转变,相变潜热的释放导致IHTC不连续的现象发生。与以距离模具形面下方1 mm处作为淬火介质的环境温度相比,以模具形面处作为淬火介质的环境温度得到的IHTC分布规律同前者基本一致,但IHTC的数值较高。

关键词: 金属材料, 硼钢, 热冲压, 界面热交换系数, 反传热模型

Abstract: Interface Heat Transfer Coefficient (IHSC) between blank and tools is the key factor to obtain the temperature field, stress and strain fields and microstructure distribution of boron steel hop stamping parts. By measuring the temperature changes of the blank and die in the process of quenching combined with finite element analysis and the inverse heat transfer model, the relationship between the interface heat transfer coefficient and temperature was obtained. The results show that IHSC ranges from 1970 W/(m2·K) to 3960 W/(m2·K) when the temperature of the blank decreases from 770 ℃ to 200 ℃. IHTC decreases as the temperature of the blank decreases. However, the release of latent heat during the transformation from austenite to martensite results in the discontinuity of IHTC at 420 ℃. The distribution of IHTC is almost the same under different environmental temperatures and quenching mediums. The IHTC values of the die surface temperature as quenching medium are higher than those at the location 1 mm below the surface of the die.

Key words: metal material, boron steel, hot stamping, interface heat transfer coefficient, inverse heat transfer model

中图分类号: 

  • TG156.3
[1] Merklein M, Lechler J. Determination of material and process characteristics for hot stamping processes of quenchable ultra high strength steels with respect to a FE-based process design[J]. SAE Int J Mater Manuf, 2009,1(1):411-426.
[2] Åkerström P, Oldenburg M. Austenite decomposition during press hardening of a boron steel-computer simulation and test[J]. Journal of Materials Processing Technology, 2006, 174:399-406.
[3] Tekkaya A E, Karbasian H, Homberg W, et al. Thermo-mechanical coupled simulation of hot stamping components for process design[J]. Computer Aided Engineering, 2007, 1(1):85-89.
[4] Lee M G, Kim S J , Han H N, et al. Application of hot press forming process to manufacture an automotive part and its finite element analysis considering phase transformation plasticity[J]. International Journal of Mechanical Sciences, 2009, 51(11-12):888-898.
[5] 张志强. 高强度钢板热冲压技术及数值模拟[J]. 热加工工艺,2010(11):103-105. Zhang Zhi-qiang. Hot stamping of high strength steel sheet and its numerical simulation[J]. Hot Working Technology, 2010(11):103-105.
[6] 张志强. B柱热冲压数值分析研究[J]. 锻压技术,2010(3):58-60. Zhang Zhi-qiang. Numerical analysis of B pillar hot stamping[J]. Forging and Stamping Technology, 2010(3):58-60.
[7] Zhang Zhi-qing, Ye Zhong-chao, Zhang Yi-sheng, et al. Numerical analysis on hot stamping of B pillar reinforcement of automobiles[J]. Advanced Materials Research, 2010 (97-101):282-285.
[8] Tondini F, Bosetti P, Bruschi S. An experimental-numerical procedure to identify heat transfer coefficient in hot stamping processes[C]∥Proceedings of Euromech, Lisboa, 2009: 1-7.
[9] Abdulhay B, Bourouga B, Dessain C, et al. Experimental study of heat transfer in hot stamping process[J]. International Journal of Material Forming, 2009, 2(Suppl.1):255-257.
[10] Merklein M , Lechler J, Stoehr T. Investigations on the thermal behavior of ultra high strength boron manganese steels within hot stamping[J]. International Journal of Material Forming, 2009, 2(Suppl.):259-262.
[11] 李辉平, 贺连芳, 赵国群. 硼钢B1500HS界面传热系数与压力关系的研究[J]. 机械工程学报, 2013(16):77-83. Li Hui-ping, He Lian-fang, Zhao Guo-qun. Research on the surface heat transfer coefficient depending on surface pressure of boron steel B1500HS[J]. Journal of Mechanical Engineering, 2013(16): 77-83.
[12] 顾剑锋,潘建生,胡明娟. 淬火冷却过程中表面综合换热系数的反传热分析[J]. 上海交通大学学报, 1998, 32(2):19-22. Gu Jian-feng, Pan Jian-sheng, Hu Ming-juan. Inverse heat conduction analysis of synthetical surface hear transfer coefficient during quenching process[J]. Journal of Shanghai Jiaotong University,1998, 32(2):19-22.
[13] 刘庄,吴肇基,吴景之,等. 热处理过程的数值模拟[M]. 北京:科学出版社,1996.
[1] 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805.
[2] 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[3] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[4] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[5] 汤华国, 马贤锋, 赵伟, 刘建伟, 赵振业. 高性能金属铝的制备、微观结构及其热稳定性[J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[6] 关庆丰, 张远望, 孙潇, 张超仁, 吕鹏, 张从林. 强流脉冲电子束作用下铝钨合金的表面合金化[J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[7] 胡侃, 于野, 盈亮, 胡平, 侯文彬. 基于校车侧翻安全性的热冲压立柱结构优化设计[J]. 吉林大学学报(工学版), 2017, 47(3): 884-890.
[8] 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[9] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[10] 贺斌, 李显达, 盈亮, 胡平, 张向奎. 热冲压模具随形冷却水道优化设计[J]. 吉林大学学报(工学版), 2016, 46(6): 1974-1980.
[11] 张学广, 刘纯国, 郑愿, 江仲海, 李湘吉. 基于延性损伤和剪切损伤的铝合金成形极限预测[J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[12] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[13] 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[14] 张家陶, 赵宇光, 谭娟. 初始组织对电脉冲处理逆变奥氏体晶粒细化效果的影响[J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
[15] 张志强, 贾晓飞, 袁秋菊. 基于Yoshida-Uemori模型的TRIP800高强钢回弹分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1852-1856.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋雨来,刘耀辉,朱先勇,王素环,于思荣. 钕对AZ91镁合金组织及机械性能的影响[J]. 吉林大学学报(工学版), 2006, 36(03): 289 -0293 .
[2] 张志强, 金文明, 杨慎华, 赵勇, 郑祺峰. 连杆裂解加工力参数数值分析[J]. 吉林大学学报(工学版), 2009, 39(04): 959 -963 .
[3] 宋雨来, 刘耀辉, 朱先勇, 王文琴. Ho对AZ91镁合金腐蚀行为的影响[J]. 吉林大学学报(工学版), 2011, 41(02): 366 -0370 .
[4] 徐虹, 刘亚楠, 于婷, 谷诤巍, 李湘吉, 张志强. 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理[J]. 吉林大学学报(工学版), 2017, 47(1): 191 -198 .