吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 255-261.doi: 10.13229/j.cnki.jdxbgxb201701037
肖明尧1, 2, 李雄飞2
XIAO Ming-yao1, 2, LI Xiong-fei2
摘要: 针对阈值图像分割算法对噪音敏感的问题,提出了一种新的基于分解的Otsu阈值分割算法。整个分割算法为一个迭代过程,在每次迭代中,该图像首先用3D Otsu算法进行分割,然后利用高斯核函数对原图像进行滤波,得到一个平滑的图像,然后被输入到下一个迭代中。最后,合并每次迭代过程中产生的分割结果,获得最终的分割结果。该算法的优点在于分割结果稳定,且具有较强的抗噪性。本文在MR大脑图像上进行实验,结果表明,该算法优于其他同类阈值分割算法。
中图分类号:
[1] Zhang L, Ji Q. A Bayesian network model for automatic and interactive image segmentation[J]. IEEE Transactions on Image Processing, 2011, 20(9): 2582-2593. [2] Tlig L, Sayadi M, Fnaiech F. A new fuzzy segmentation approach based on S-FCM type 2 using LBP-GCO features[J]. Signal Processing: Image Communication, 2012, 27(6): 694-708. [3] Sarkar S, Das S, Chaudhuri S S. A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution[J]. Pattern Recognition Letters, 2015, 54: 27-35. [4] Gómez D, Yáñez J, Guada C, et al. Fuzzy image segmentation based upon hierarchical clustering[J]. Knowledge-Based Systems, 2015,87(c): 26-37. [5] 景晓军, 李剑峰, 刘郁林.一种基于三维最大类间方差的图像分割算法[J].自动化学报, 2003,31(9): 1281-1285. Jing Xiao-jun, Li Jian-feng, Liu Yu-lin. Image segmentation based on 3-D maximum between-cluster variance[J]. Acta Electronica Sinica, 2013, 31(9) :1281-1285. [6] Miao Q, Xu P, Liu T, et al. A novel fast image segmentation algorithm for large topographic maps[J]. Neurocomputing, 2015, 168: 808-822. [7] Bhandari A K, Kumar A, Singh G K. Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms[J]. Expert Systems with Applications, 2015, 42(22): 8707-8730. [8] Bhandari A K, Kumar A, Singh G K. Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions[J]. Expert Systems with Applications, 2015, 42(3): 1573-1601. [9] Li C, Wang X, Eberl S, et al. Supervised variational model with statistical inference and its application in medical image segmentation[J].IEEE Transactions on Biomedical Engineering,2015, 62(1):196-207. [10] Smistad E, Falch T L, Bozorgi M, et al. Medical image segmentation on GPUs—a comprehensive review[J]. Medical Image Analysis, 2015, 20: 1-18. [11] Aja-Fernández S, Curiale A H, Vegas-Sánchez-Ferrero G.A local fuzzy thresholding methodology for multiregion image segmentation[J]. Knowledge-Based Systems, 2015, 83:1-12. [12] Manikandan S, Ramar K, Iruthayarajan M W, et al. Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm[J]. Measurement, 2014, 47:558-568. [13] Sathya P D, Kayalvizhi R. Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm[J]. Neurocomputing, 2011, 74(14) : 2299-2313. [14] Maitra M, Chatterjee A. A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging[J]. Measurement , 2008, 41(10): 1124-1134. [15] 罗述谦, 唐宇. 基于有偏场的适配模糊聚类分割算法[J]. 中国图象图形学报, 2002, 7(2):111-114. Luo Shu-qian, Tang Yu.A bias based adaptive fuzzy segmentation algorithm[J].Journal of Image and Graphics,2002, 7(2):111-114. [16] Li C, Huang R, Ding Z, et al. A level set method for image segmentation in the presence of intensity in homogeneities with application to MRI[J]. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016. [17] Dai S, Lu K, Dong J, et al. A novel approach of lung segmentation on chest CT images using graph cuts[J]. Neurocomputing, 2015, 168: 799-807. [18] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics,2007,9(1):62-66. [19] Kittler J, Illingworth J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1): 41-47. [20] Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285. [21] Lin Q, Ou C. Tsallis entropy and the long-range correlation in image thresholding[J]. Signal Processing, 2012, 92(12): 2931-2939. [22] Cai H, Yang Z, Cao X, et al., A new iterative triclass thresholding technique in image segmentation[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1038-1046. [23] 龙建武,申铉京,陈海鹏. 自适应最小误差阈值分割算法[J].自动化学报,2012, 38(7) :1134-1144. Long Jian-wu, Shen Xuan-jing, Chen Hai-peng. Adaptive minimum error thresholding algorithm[J]. Acta Automatica Sinica, 2012, 38(7) :1134-1144. [24] Dey S, Saha I, Bhattacharyya S, et al. Multi-level thresholding using quantum inspired meta-heuristics[J]. Knowledge Based Systems, 2014, 67: 373-400. [25] Hammouche K, Diaf M, Siarry P. A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation[J]. Computer Vision & Image Understanding, 2008, 109(2): 163-175. [26] Chen X, Udupa J K, Bagci U, et al. Medical image segmentation by combining graph cuts and oriented active appearance models[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2035-2046. |
[1] | 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850. |
[2] | 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858. |
[3] | 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866. |
[4] | 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872. |
[5] | 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878. |
[6] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[7] | 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570. |
[8] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
[9] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[10] | 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613. |
[11] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[12] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[13] | 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[14] | 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
[15] | 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
|