吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 274-280.doi: 10.13229/j.cnki.jdxbgxb201701040
邹领, 贺前华, 邝细超, 李洪滔, 蔡梓文
ZOU Ling, HE Qian-hua, KUANG Xi-chao, LI Hong-tao, CAI Zi-wen
摘要: 针对录音设备源识别问题,首先分析了语音录音的产生过程,在此基础上提出了一种基于设备噪声估计的录音设备指纹,为了获取充分的设备噪声,使用了一个包含两种噪声估计算法的设备噪声估计器。为了验证提出的设备指纹的有效性,同时考虑了5种分类方法来进行录音设备源识别,并在两个录音库上进行了实验。其中一个包含22个录音设备,该22个设备分别来自4类常用的录音设备,另一个音库包含21个手机的语音录音。实验结果证明了本文方法的有效性。
中图分类号:
[1] Zhao H, Malik H. Audio recording location identification using acoustic environment signature[J]. IEEE Trans Inf Forensics Security, 2013, 8(11): 1746-1759. [2] 曾锦华,施少培,杨旭,等. 数字录音真实性司法鉴定研究现状[J]. 中国司法鉴定, 2014(4): 57-61. Zeng Jin-hua, Shi Shao-pei, Yang Xu, et al. The state of art in digital audio forensic authentication[J]. Chinese Journal of Forensic Sciences, 2014(4): 57-61. [3] Kraetzer C, Oermann A, Dittmann J, et al. Digital audio forensics: a first practical evaluation on microphone and environment classification[C]∥The Workshop on Multimedia and Security, Dallas, TX, USA, 2007: 63-74. [4] Kraetzer C, Schott M, Dittmann J. Unweighted fusion in microphone forensics using a decision tree and linear logistic regression models[C]∥The 11th ACM Multimedia and Security Workshop, New York, 2009: 49-56. [5] Buchholz R, Kraetzer C, Dittmann J. Microphone Classification Using Fourier Coefficients[M].Berlin: Springer, 2010:235-246. [6] Kraetzer C, Qian K, Schott M, et al. A context model for microphone forensics and its application in evaluations[C]∥SPIE Conference on Media Watermarking, Security, and Forensics, London,2011. [7] Kraetzer C, Qian K, Dittmann J. Extending a context model for microphone forensics[C]∥Proc SPIE, 2012, 8303:265-298. [8] Malik H, Miller J. Microphone identification using higher-order statistics[C]∥AES 46th Conf Audio Forensics, Denver, CO, USA,2012. [9] Eskidere O. Source microphone identification from speech recordings based on a Gaussian mixture model[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2014, 22(3): 754-767. [10] Garcia-Romero D, Espy-Wilson C. Speech forensics: automatic acquisition device identification[J]. J Acoust Soc Am, 2010, 127(3):2044. [11] Garcia-Romero D, Espy-Wilson C. Automatic acquisition device identification from speech recordings[C]∥Proc IEEE Int Conf Acoustics, Speech, Signal Processing (ICASSP), Dallas, TX, USA, 2010: 1806-1809. [12] Garcia-Romero D, Espy-Wilson C. Automatic acquisition device identification from speech recordings[J]. J Audio Eng Soc, 2009, 124(4): 2530. [13] Reynolds D A. HTIMIT and LLHDB: speech corpora for the study of handset transducer effects[C]∥Proc IEEE Int Conf Acoustics, Speech, Signal Processing (ICASSP), Munich, Germany, 1997:1535-1538. [14] Kishore S P, Yegnanarayanana B. Identification of handset type using autoassociative neural networks[C]∥Fourth Int Conf Advances in Pattern Recognition and Digital Techniques, 1999:353-356. [15] Mak M W, Kung S Y. Combining stochastic feature transformation and handset identification for telephone-based speaker verification[C]∥Proc IEEE Int Conf Acoustics, Speech, Signal Processing (ICASSP),Orlando,FL,2002:701-704. [16] Panagakis Y, Kotropoulos C. Automatic telephone handset identification by sparse representation of random spectral features[C]∥The 14th ACM Multimedia and Security Workshop, Coventry, UK,2012:91-96. [17] Panagakis Y, Kotropoulos C. Telephone handset identification by feature selection and sparse representations[C]∥IEEE Int Workshop Information Forensics and Security, Tenerife, Spain, 2012:73-78. [18] Kotropoulos C. Telephone handset identification using sparse representations of spectral feature sketches[C]∥First Int Workshop Biometrics and Forensics, Lisbon, Portugal, 2013:1-4. [19] Kotropoulos C. Source phone identification using sketches of features[J]. IET Biometrics,2014,3(2):75-83. [20] Kotropoulos C, Samaras S. Mobile phone identification using recorded speech signals[C]∥The 19th International Conference on Digital Signal Processing (DSP), Hongkong,2014:586-591. [21] Hanilçi C, Ertas F, Ertas T, et al. Recognition of brand and models of cell-phones from recorded speech signals[J]. IEEE Trans Inf Forensics Security, 2012,7(2):625-634. [22] Hanilçi C, Kinnunen T. Source cell-phone recognition from recorded speech using non-speech segments[J]. Digital Signal Processing, 2014,35:75-85. [23] Jahanirad M, Wahab A W A, Anuar N B, et al. Blind source mobile device identification based on recorded call[J]. Engineering Applications of Artificial Intelligence, 2014,36:320-331. [24] Zou L, Yang J C, Huang T S. Automatic cell phone recognition from speech recordings[C]∥IEEE China Summit & International Conference on Proc Signal and Information Processing (China SIP), Beijing,2014:621-625. [25] Zou L, He Q H, Feng X H. Cell phone verification from speech recordings using sparse representation[C]∥Proc IEEE Int Conf Acoustics, Speech, Signal Processing (ICASSP), New York,2015:1787-1791. [26] 曾锦华,施少培,杨旭,等. 录音设备识别司法鉴定技术研究[J]. 中国司法鉴定, 2014(6):22-25. Zeng Jin-hua, Shi Shao-pei, Yang Xu, et al. Research on methods of audio recorder forensic identification[J]. Chinese Journal of Forensic Sciences, 2014(6):22-25. [27] 贺前华, 王志锋, Rudnicky A I, 等. 基于改进PNCC特征和两步区分性训练的录音设备识别方法[J]. 电子学报, 2014,42(1):191-198. He Qian-hua, Wang Zhi-feng, Rudnicky A I, et al. A recording device identification algorithm based on improved PNCC feature and two-step discriminative training[J]. Acta Electronica Sinica, 2014,42(1):191-198. [28] Boll S F. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE Trans Acoust, Speech, Signal Process, 1979,27(2):113-120. [29] Kamath S, Loizou P. A multi-band spectral subtraction method for enhancing speech corrupted by colored noise[C]∥Proc IEEE Int Conf Acoustics, Speech, Signal Processing (ICASSP), Orlando, FL, 2002: 4164-4167. [30] Doblinger G. Computationally efficient speech enhancement by spectral minima tracking in subbands[C]∥EUROSPEECH, Berlin,Germany,1995:1513-1516. [31] Duda R O, Hart P E, Stork D G. Pattern Classification[M]. 2nd ed. New York: Wiley, 2000. [32] Hall M, Frank E, Holmes G, et al. The WEKA data mining software: an update[J]. SIGKDD Explorations Newsletter, 2009,11(1):10-18. |
[1] | 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894. |
[2] | 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903. |
[3] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[4] | 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916. |
[5] | 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924. |
[6] | 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930. |
[7] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[8] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
[9] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[10] | 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[11] | 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[12] | 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[13] | 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506. |
[14] | 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
[15] | 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639. |
|