吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 996-1002.doi: 10.13229/j.cnki.jdxbgxb201703042

• • 上一篇    下一篇

改进粒子群优化BP神经网络的目标威胁估计

黄璇1, 2, 郭立红1, 李姜2, 于洋2   

  1. 1.中国科学院 长春光学精密机械与物理研究所,长春 130033;
    2.中国科学院大学,北京 100039
  • 收稿日期:2016-01-15 出版日期:2017-05-20 发布日期:2017-05-20
  • 通讯作者: 郭立红(1964-),女,研究员,博士.研究方向:光电对抗装备总体设计.E-mail:guolh@ciomp.ac.cn
  • 作者简介:黄璇(1988-),男,博士研究生.研究方向:多源引导信息融合.E-mail:huangxuan@ceprei.biz
  • 基金资助:
    国家自然科学基金项目(61205143)

Target threat assessment based on BP neural network optimized by modified particle swarm optimization

HUANG Xuan1, 2, GUO Li-hong1, LI Jiang2, YU Yang2   

  1. 1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
    2.University of Chinese Academy of Sciences, Beijing 100039,China
  • Received:2016-01-15 Online:2017-05-20 Published:2017-05-20

摘要: 为了提高目标威胁估计精度,提出一种运用改进粒子群算法优化BP神经网络的方法。为了避免陷入局部极值,将变异过程引入粒子群算法中,并对相关参数进行优化,形成改进粒子群算法,对BP神经网络的初始权值和阈值进行优化。利用样本数量不同的训练集对网络进行训练,并用60组测试集数据对网络进行验证。实验结果表明,改进粒子群优化BP神经网络目标威胁估计算法具有更高的预测精度,在训练样本数量较小时能够获得较好的预测能力,可以有效地完成目标威胁估计。

关键词: 信息处理技术, 威胁估计, 粒子群优化算法, BP神经网络, 参数优化

Abstract: An algorithm for target threat assessment based on Back Propagation (BP) neural network optimized by Modified Particle Swarm Optimization (MPSO) is proposed to improve the prediction accuracy of target threat. In this MPSO algorithm, mutation operator and optimization for several parameters are introduced in PSO to avoid the particle plunging into the local optimization. The MPSO algorithm is employed to optimize the initial weights and thresholds of the BP neural network. Then the BP neural network optimized by MPSO is trained by training sets of different sample sizes. 60 sets of target threat data are adopted to test the performance of MPSO-BP in target threat prediction. Experimental results show that the prediction accuracy of target threat assessment algorithm based on MPSO-BP is higher than that based on some traditional algorithms, which proves the efficiency of the proposed algorithm in solving target threat assessment problem in spite of the small sample size of training set.

Key words: information processing technology, threat assessment, particle swarm optimization(PSO) algorithm, BP neural network, parameter optimization

中图分类号: 

  • TP391.9
[1] 王小龙,宋裕农,丁文强. 基于分层贝叶斯网络的反潜编队对潜威胁估计[J]. 火力与指挥控制,2014,39(4):82-85.
Wang Xiao-long, Song Yu-nong, Ding Wen-qiang. Method for evaluate threat of anti-submarine war fleet to submarine based on hierarchical bayesian network[J]. Fire Control and Command Control,2014,39(4):82-85.
[2] 王毅,刘三阳,张文,等. 属性权重不确定的直觉模糊多属性决策的威胁评估方法[J]. 电子学报,2014,42(12):2509-2514.
Wang Yi, Liu San-yang, Zhang Wen, et al. Threat assessment method with uncertain attribute weight based on intuitionistic fuzzy multi-attribute decision[J]. Acta Electronica Sinica,2014,42(12): 2509-2514.
[3] 谷向东,童中翔,柴世杰,等. 基于IAHP和离差最大化TOPSIS法目标威胁评估[J]. 空军工程大学学报:自然科学版,2011,12(2):27-31.
Gu Xiang-dong, Tong Zhong-xiang, Chai Shi-jie, et al. Target threat assessment based on TOPSIS combined by IAHP and the maximal deviation[J]. Journal of Air Force Engineering University(Natural Science Edition),2011,12(2):27-31.
[4] 耿涛,卢广山,张安. 基于Vague集的空中目标威胁评估群决策方法[J]. 系统工程与电子技术,2011,33(12):2686-2690.
Geng Tao, Lu Guang-shan, Zhang An. Group decision-making method for air target threat assessment based on Vague sets[J]. Systems Engineering and Electronics,2011,33(12):2686-2690.
[5] 黄璇,郭立红,李姜,等. 磷虾群算法优化支持向量机的威胁估计[J]. 光学精密工程,2016,24(6):1448-1455.
Huang Xuan, Guo Li-hong, Li Jiang, et al. Three assessment of support vector machine optimized by Krill Herd algorithm[J]. Optics and Precision Engineering,2016,24(6):1448-1455.
[6] 李姜,郭立红. 基于改进支持向量机的目标威胁估计[J]. 光学精密工程,2014,22(5):1354-1362.
Li Jiang,Guo Li-hong. Target threat assessment using improved SVM[J]. Optics and Precision Engineering, 22(5):1354-1362.
[7] 程帅,孙俊喜,曹永刚,等. 增量深度学习目标跟踪[J]. 光学精密工程,2015,23(4): 1161-1170.
Cheng Shuai, Sun Jun-xi, Cao Yong-gang, et al. Target tracking based on incremental deep learning[J]. Optics and Precision Engineering,2015,23(4):1161-1170.
[8] 赵博,李成浩,李元春. 基于故障在线估计的可重构机械臂分散容错控制[J]. 吉林大学学报:工学版,2014,44(6):1729-1735.
Zhao Bo, Li Cheng-hao, Li Yuan-chun, et al. Online fault estimation based on decentralized fault tolerant control for reconfigurable manipulators[J]. Journal of Jilin University (Engineering and Technology Edition),2014,44(6):1729-1735.
[9] 杨娜,陈后金,李艳凤,等. 基于改进的脉冲耦合神经网络模型的图像分割[J]. 吉林大学学报:工学版,2013,43(3):758-763.
Yang Na, Chen Hou-jin, Li Yan-feng, et al. Algorithm of image segmentation based on the improved pulse coupled neural network model[J]. Journal of Jilin University (Engineering and Technology Edition),2013,43(3):758-763.
[10] 罗艳春,郭立红,姜晓莲,等. 基于模糊神经网络的空中目标威胁估计[J]. 微计算机信息,2007,23(34):268-270.
Luo Yan-chun,Guo Li-hong,Jiang Xiao-lian,et al. Threat assessment for aerial target based on fuzzy neural network[J]. Microcomputer Information,2007,23(34):268-270.
[11] 李东年,周以齐. 采用改进粒子群优化粒子滤波的三维人手跟踪[J]. 光学精密工程,2014,22(10):2870-2878.
Li Dong-nian, Zhou Yi-qi. Three dimensional hand tracking by improved particle swarm optimized particle filter[J]. Optics and Precision Engineering,2014,22(10):2870-2878.
[12] 刘青,李阳. 基于多尺度径向基函数的时变系统辨识[J]. 北京航空航天大学学报,2015,41(9):1722-1728.
Liu Qing, Li Yang. Identification of time-varying systems using multi-scale radial basis function[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(9):1722-1728.
[13] Ko C N, Chang Y P, Wu C J, et al. A PSO method with nonlinear time-varying evolution for optimal design of harmonic filter[J]. IEEE Transactions on Power Systems,2009,23(1):437-444.
[14] Kennedy J, Eberhart R C. Particle swarm optimization[C]∥Proceeding of the IEEE International Conference on Neural Networks,Perth, Australia,1995:1942-1948.
[15] Ling S H, Iu H, Leung F H, et al. Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging[J]. IEEE Transactions on Industrial Electronics,2008,55(9):3447-3460.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 李静, 丁明慧, 李立刚, 陈立军. 基于活塞形状的空气弹簧动特性分析与参数优化[J]. 吉林大学学报(工学版), 2018, 48(2): 355-363.
[14] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[15] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!