吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1144-1148.doi: 10.13229/j.cnki.jdxbgxb201704019

• 论文 • 上一篇    下一篇

基于波纹梁的两自由度低频振动能量收集装置

王海, 姚刚, 邱皖群, 杨春来, 付邦晨   

  1. 安徽工程大学 机械与汽车工程学院,安徽 芜湖 241000
  • 收稿日期:2016-03-23 出版日期:2017-07-20 发布日期:2017-07-20
  • 作者简介:王海(1976-),男,教授,博士.研究方向:微机械.E-mail:wanghai.20000@163.com
  • 基金资助:
    国家自然科学基金项目(51275001,51375469).

Performance-enhanced two-degree-of-freedom energy harvester for low frequency vibration utilizing corrugated cantilever beam

WANG Hai, YAO Gang, QIU Wan-qun, YANG Chun-lai, FU Bang-chen   

  1. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China
  • Received:2016-03-23 Online:2017-07-20 Published:2017-07-20

摘要: 为改善压电式振动能量收集装置固有频率高、能量收集效率低等问题,设计了一种基于波纹梁式压电振子的两自由度振动能量收集装置,并通过理论建模和数值仿真分析其能量收集特性。分析结果表明:与传统的单自由度和两自由度压电振子相比,含有波纹梁的压电振子的固有频率最低,且前五阶固有频率均为0~60 Hz;其中,第四阶固有频率为45.92 Hz,比单自由度压电振子低419.9 Hz,比传统两自由度压电振子低55.1 Hz。同时,在相同条件下波纹梁式两自由度压电振子输出的电压最大,可达到28 V。

关键词: 机械设计, 压电能量收集, 波纹梁, 低频, 两自由度

Abstract: Traditional Piezoelectric Energy Harvester (PEH) has high natural frequency and low electromechanical conversion efficiency. To overcome this problem a corrugate two-degree-of-freedom (2DOF) PEH is proposed. The energy harvesting characteristics are analyzed using theoretical modeling and numerical simulation. Results show that compared to 1DOF PEH and traditional 2DOF PEH, corrugate 2DOF PEH can achieve fifth order of resonance frequency in the range of 0 to 60 Hz. The fourth resonance frequency of the corrugate 2DOF PEH is 45.92 Hz, which is 419.9 Hz lower than that of 1DOF PEH, and 55.1 Hz lower than that of traditional 2DOF PEH. Meanwhile, the output voltage of the corrugate 2DOF PEH can be controlled as high as 28 V in the same condition, which is the highest voltage among the three harvesters.

Key words: mechanical design, piezoelectric energy harvesting, corrugated cantilevered beam, low frequency, two-degree-of-freedom

中图分类号: 

  • TH132
[1] Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003-2006)[J]. Smart Material and Structures, 2007, 16(3):1-21.
[2] 闫世伟,杨志刚,阚君武,等. 压电陶瓷能量转换系统[J].吉林大学学报:工学版, 2008,38(2):344-348.
3 Yan Shi-wei, Yang Zhi-gang, Kan Jun-wu, et al. Energy conversion system with piezoelectric ceramic[J]. Journal of Jilin University (Engineering and Technology Edition), 2008,38(2):344-348.
[3] Elvin N G, Elvin A A. An experimentally validated electromagnetic energy harvester[J]. Journal of Sound and Vibration, 2011,330(10):2314-2324.
[4] Glynne-Jones P, Tudor M J, Beeby S P, et al. An electromagnetic vibration-powered generator for intelligent sensor systems[J]. Sensors and Actuators A: Physical, 2004,110(1-3):344-349.
[5] Sheu G J, Yang S M, Lee T. Development of a low frequency electrostatic comb-drive energy harvester compatible to soc design by cmos process[J]. Sensors and Actuators A: Physical, 2011,167(1):70-76.
[6] Naruse Y, Matsubara N, Mabuchi K, et al. Electrostatic micropower generation from low-frequency vibration such as human motion[J]. Journal of Micromechanics and Microengineering, 2008,19(9):19-22.
[7] Knight C,Joshua D,Sam B. Energy options for wireless sensor nodes[J]. Sensors,2008,8(12): 8037-8066.
[8] Chen S N, Wang G J, Chien M C. Analytical modeling of piezoelectric vibration-induced micro power generator[J]. Mechatronics, 2006, 16(9): 379-387.
[9] 管青春. 悬臂梁式压电能量回收装置结构优化[D]. 合肥:中国科学技术大学物理学院, 2011.
Guan Qing-chun.Structual optimization of cantilever piezoelectric energy harvesting devices[D]. Hefei:School of Physical Sciences, University of Science and Technology of China,2011.
[10] Leland E S,Wright P K. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload[J]. Smart Materials and Structures,2006,15(5):1413-1420.
[11] Wu Hao, Tang Li-hua, Yang Yao-wen,et al. Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester[J]. Journal of Intelligent Material System and Structure, 2014, 25(14):1875-1889.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[4] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[5] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[6] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[7] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[8] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[9] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[10] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[11] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[12] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[13] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[14] 陈忠敏, 侯力, 段阳, 张祺, 杨忠学, 蒋易强. 新型摆线针轮行星减速器传动系统的振动特性[J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
[15] 刘念, 徐涛, 徐天爽, 胡贤磊, 刘维海. 基于差厚技术的汽车仪表板管梁轻量化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 199-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!