吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1179-1184.doi: 10.13229/j.cnki.jdxbgxb201704024

• 论文 • 上一篇    下一篇

仿生功能表面内流减阻测试系统的研制

田丽梅, 王养俊, 李子源, 商延赓   

  1. 吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2016-09-22 出版日期:2017-07-20 发布日期:2017-07-20
  • 通讯作者: 商延赓(1964-),男,高级工程师,博士.研究方向:仿生功能表面材料设计.E-mail:shangyk@jlu.edu.cn
  • 作者简介:田丽梅(1973-),女,教授,博士生导师.研究方向:仿生功能表面设计及应用.E-mail:lmtian@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(51475203).

Development of drag-reduction test system of bionic functional surfaces with internal flow

TIAN Li-mei, WANG Yang-jun, LI Zi-yuan, SHANG Yan-geng   

  1. Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University, Changchun 130022,China
  • Received:2016-09-22 Online:2017-07-20 Published:2017-07-20

摘要:

为测量与研究仿生功能表面在内流管道中的减阻性能,设计了基于压差测试原理的测试系统。针对内流流动的特点,设计的试验段可拆装并能够安装不同厚度的试样做为流场壁面。设计了基于PLC(可编程序控制器)的数据采集处理与控制系统,并对系统精度进行分析,得出了各流速点对应的均方差极限。利用该系统对弹性表面和弹性导热仿生表面减阻进行了测试与研究,结果表明该系统能够对内流流动中的各种仿生功能表面减阻性能进行测试并具有较高的精度。

关键词: 工程仿生学, 仿生功能表面, 减阻, 弹性导热, 测试系统

Abstract:

To study and measure the drag-reduction performance of bionic functional surfaces with internal flow, a testing system based on differential pressure measurement was designed. Considering the characteristics of the internal flow, the test section is replacable to adapt to the flow field wall with different thickness. The data acquisition, processing and control system was designed based on programmable logic controller. The system precision was analyzed and the mean square errors of different flow velocities were calculated. The elastic silicone rubber and elastic thermal conductive bionic surface was tested using this system. The system can provide a high accuracy analysis and test platform for the study of drag-reduction performance of various bionic functional surfaces with internal flow.

Key words: bionic engineering, bionic functional surface, drag-reduction, elastic thermal conductive, test system

中图分类号: 

  • TB17
[1] 陆夕云, 杨基明, 尹协振, 等. 飞行和游动的生物运动力学和仿生技术研究[J]. 中国科学技术大学学报, 2007, 37(10): 1159-1163.
Lu Xi-yun,Yang Ji-ming,Yin Xie-zhen,et al. Some studies on biofluiddynamics of flight and swimming animals and biomimetic technology[J]. Journal of University of Science and Technology of China,2007, 37(10):1159-1163.
[2] Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2010, 368(1929): 4775-4806.
[3] Von Gleich A, Pade C, Petschow U, et al. Potentials and Trends in Biomimetics[M].Beilin: Springer Science & Business Media, 2010:33-74.
[4] Kramer M O. Boundary layer stabilization by distributed damping[J]. Journal of the American Society for Naval Engineers, 1960, 72(1): 25-34.
[5] Gad-el-Hak M. Compliant coatings for drag reduction[J]. Progress in Aerospace Sciences, 2002, 38(1): 77-99.
[6] Pätzold A, Peltzer I, Nitsche W, et al. Active compliant wall for skin friction reduction[J]. International Journal of Heat and Fluid Flow, 2013, 44: 87-94.
[7] Gaster M. Is the Dolphin a Red Herring?[M]//Liepmann W H. Turbulence management and relaminarisation. Berlin: Springer, 1988: 285-304.
[8] Colley A J, Thomas P J, Carpenter P W, et al. An experimental study of boundary-layer transition over a rotating, compliant disk[J]. Physics of Fluids, 1999, 11(11): 3340-3352.
[9] 张祯华. 以聚氨酯为基质的柔性仿生减阻材料的制备及其减阻性能研究[D]. 广州:华南理工大学材料科学与工程学院, 2012.
Zhang Zhen-hua. The preparation and the drag-reduction properties of compliant and bionic drag-reduction materials using polyurethane as a matrix[D]. Guangzhou: College of Material Sciences and Engineering,South China University of Technology, 2012.
[10] Semenov B N, Amirov A I, Kulik V M, et al. Experimental studies of compliant coatings for reduction of turbulent friction[J]. Thermophysics and Aeromechanics, 2007, 14(1):133-142.
[11] 商延赓, 金娥, 可庆朋, 等. 仿海豚皮肤结构的功能表面提高离心泵效率[J]. 农业工程学报, 2016, 32(7): 72-78.
Shang Yan-geng, Jin E, Ke Qing-peng, et al. Efficiency improvement of centrifugal pump with function surface imitating dolphin skin structure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7): 72-78.
[12] 陈超, 宫武旗, 刘禛, 等. 湍流边界层流动结构研究用低 R e数水洞试验台的设计及测试[J]. 工程热物理学报, 2010,31(1):52-54.
Chen Chao, Gong Wu-qi, Liu Zhen, et al. Design and test of a recycled water tunnel for investigating turbulence boundary layer flow at low reynolds number[J]. Journal of Engineering Thermophysics, 2010,31(1):52-54.
[13] 李金成, 陈作钢, 代燚. CFD 在风洞循环水槽设计中的应用[J]. 水动力学研究与进展, 2012,27(2): 216-223.
Li Jin-cheng, Chen Zuo-gang, Dai Yi. CFD application in design of wind tunnel-circulating water channel[J]. Chinese Journal of Hydrodymamics, 2012,27(2): 216-223.
[14] 于昌利. 循环水槽系统设计及参数研究[D]. 哈尔滨:哈尔滨工程大学船舶工程学院, 2009.
Yu Chang-li. The system design and parameter study of circulating water channel[D]. Harbin:College of Shipbuilding Engineering,Harbin Engineering University, 2009.
[15] 王靖宇, 胡兴军, 李庆臣, 等. 面包车尾部造型对其气动特性的影响[J]. 吉林大学学报: 工学版, 2011, 41(3): 618-622.
Wang Jing-yu, Hu Xing-jun, Li Qing-chen, et al. Influence of tail-end styling on aerodynamic characteristics of minibus[J]. Journal of Jilin University (Engineering of Technology Edition), 2011, 41(3): 618-622.
[16] 田丽梅, 商震, 胡国梁, 等. 基于形态仿生的轿车升阻特性的数值模拟[J]. 吉林大学学报: 工学版, 2014,44(5): 1283-1289.
Tian Li-mei, Shang Zhen, Hu Guo-liang, et al. Numerical simulation of the lift and drag characteristics of passenger car based on morphological bionics[J]. Journal of Jilin University (Engineering of Technology Edition), 2014,44(5): 1283-1289.
[17] 季曙明. 超疏水表面宏观尺度下流动减阻机理的实验研究[D]. 上海:上海交通大学机械与动力工程学院, 2010.
Ji Shu-ming. Experimental study about the flowdrag reduction on super-hydrophobic surface at themacroscopic level[D]. Shanghai:School of Mechanical Engineering,Shanghai Jiao Tong University, 2010.
[18] Bandyopadhyay P R, Henoch C, Hrubes J D, et al. Experiments on the effects of aging on compliant coating drag reduction[J]. Physics of Fluids 2005, 17(8): 085104.
[19] Tian L, Jin E, Li Z, et al. The fluid control mechanism of bionic structural heterogeneous composite materials and its potential application in enhancing pump efficiency[J]. Advances in Mechanical Engineering, 2015, 7(11): 1393-1396.
[20] 梅浩然. 弹性导热仿生功能表面制备及流体控制机制研究[D]. 长春:吉林大学生物与农业工程学院, 2016.
Mei Hao-ran. Preparation of elastic thermal conductive bionic functional surface and study of fluid control mechanism[D]. Changchun:College of Biological and Agricultural Engineering,Jilin University, 2016.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[4] 杨诚, 宋萍, 彭文家, 金昊龙, 潘志强. 基于混合总线的装甲车辆实车综合测试系统设计[J]. 吉林大学学报(工学版), 2018, 48(1): 186-198.
[5] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[6] 柏德恩, 全齐全, 李贺, 陈雅文, 邓宗全. 伺服加载的谐波减速器启动力矩测试系统[J]. 吉林大学学报(工学版), 2017, 47(6): 1804-1810.
[7] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[8] 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[9] 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[10] 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[11] 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[12] 赵刚, 李照远, 赵华兴, 饶宇, 李芳, 刘文博. 外旋立式射流减阻测试平台研制及实验[J]. 吉林大学学报(工学版), 2016, 46(4): 1175-1181.
[13] 梁云虹, 任露泉. 人类生活及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384.
[14] 钱志辉, 苗怀彬, 任雷, 任露泉. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862.
[15] 邹猛, 于用军, 张荣荣, 魏灿刚, 王会霞. 仿牛角结构薄壁管吸能特性仿真分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!