吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1295-1300.doi: 10.13229/j.cnki.jdxbgxb201704040

• 论文 • 上一篇    下一篇

基于移位协方差矩阵Otsu算法的信源数目估计

关济实1, 2, 石要武1, 单泽彪1, 3, 石屹然1, 史红伟3   

  1. 1.吉林大学 通信工程学院,长春 130022;
    2.中广核研究院有限公司 北京分公司, 北京 100086;
    3.长春理工大学 电子信息工程学院, 长春 130022
  • 收稿日期:2016-05-21 出版日期:2017-07-20 发布日期:2017-07-20
  • 通讯作者: 单泽彪(1986-),男,讲师,博士.研究方向:雷达与阵列信号处理.E-mail:zbshan@126.com
  • 作者简介:关济实(1977-),男,博士研究生.研究方向:阵列信号处理.E-mail:guanjishi@sina.com
  • 基金资助:
    国家自然科学基金项目(61571462); 国防基础科研计划项目(JCKY2016411C006).

Estimation of number of signals based on Otsu class variance with shift covariance matrix

GUAN Ji-shi1, 2, SHI Yao-wu1, SHAN Ze-biao1, 3, SHI Yi-ran1, SHI Hong-wei3   

  1. 1.College of Communication Engineering, Jilin University, Changchun 130022, China;
    2.Beijing Branch, China Nuclear Power Technology Research Institute, Beijing 100086,China;
    3.School of Electric and Information Engineering, Changchun University of Science and Technology, Changchun 130022,China
  • Received:2016-05-21 Online:2017-07-20 Published:2017-07-20

摘要: 针对阵列信号处理中信号源数目估计的问题,提出了一种基于移位协方差矩阵的Otsu类间方差法。与协方差矩阵相比,移位协方差矩阵克服了噪声自相关过程中零位极大值的影响,提高了协方差矩阵的信噪比,移位协方差矩阵的信号特征值与噪声特征值差别更为明确,更有利于信源数目的估计。由于零均值且独立同分布噪声的移位协方差理论值为0,所以移位协方差矩阵针对零均值独立同分布α稳定分布噪声同样具有较强的抑制能力。利用Otsu类间方差法对移位协方差矩阵的特征值进行分类,可以更加明确地区分信号特征值与噪声特征值。理论分析和仿真实验结果均表明,基于移位协方差矩阵的Otsu类间方差法具有比传统信源数估计方法更好的估计性能。

关键词: 信息处理技术, 信源数目估计, 移位协方差矩阵, Otsu类间方差法

Abstract: An estimation of the number of signals based on Otsu class variance with shift covariance matrix is proposed for array signal processing. The eigenvalues of the shift covariance matrix derived by noise are expected to be zero even with stable noise, so the eigenvalues derived by signal power are obviously smaller than those derived by noise, which is an advantage for signal number estimation. When class variance, which is used for classification in many problems, is applied to estimate the signal number, Otsu class variance can efficiently distinguish the eigenvalues derived by noise and by signal power. Combining the shift covariance matrix and Otsu class variance, an efficient method is obtained to estimate the signal number in array signal processing. Theoretical analysis and simulation experiments show that the performance of the proposed method is better than that of traditional method.

Key words: information processing, source number estimation, shift covariance matrix, Otsu class variance method

中图分类号: 

  • TN911
[1] Dmochowski J, Benesty J, Affes S. Direction of arrival estimation using the parameterized spatial correlation matrix[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007,15(4):1327-1339.
[2] Wan F,Zhu W,Swamy M N S.Spacial extrapolation-based blind DOA estimation approach for closely spaced sources[J].IEEE Transactions on Aerospace and Electronic Systems,2010,46(2):569-582.
[3] Reddy V V, Ng B P, Khong A W H. Derivative-constrained frequency-domain wideband DOA estimation[J]. Multidimensional Systems and Signal Processing, 2014,25(1):211-233.
[4] Yan F G, Jin M, Liu S, et al. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries[J]. IEEE Transactions on Signal Processing, 2014,62(6):1548-1560.
[5] Sharma K, Santosh S. A review on ESPRIT—estimation of signal parameters via rotational invariance techniques[J]. International Journal of Engineering Research, 2013,2(3):243-252.
[6] 单泽彪, 石要武, 刘小松, 等. 应用人工蜂群算法的动态波达方向跟踪[J]. 光学精密工程, 2015, 23(3): 838-845.
Shan Ze-biao, Shi Yao-wu, Liu Xiao-song, et al. DOA tracking of moving targets by artificial bee colony algorithm[J]. Optics and Precision Engineering, 2015, 23(3): 838-845.
[7] 单泽彪, 石要武, 刘小松, 等. 时变遗忘因子动态DOA跟踪算法[J]. 吉林大学学报:工学版,2016,46(2):632-638.
Shan Ze-biao, Shi Yao-wu, Liu Xiao-song, et al. DOA tracking algorithm of moving targets with variable forgetting factor[J]. Journal of Jilin University(Engineering and Technology Edition),2016,46(2):632-638.
[8] 石要武,陈淼,单泽涛, 等. 基于特征空间MUSIC算法的相干信号波达方向空间平滑估计[J]. 吉林大学学报:工学版,2017,47(1):268-273.
Shi Yao-wu, Chen Miao, Shan Ze-tao, et al. Spatial smoothing technique for coherent signals DOA estimation via eigen space MUSIC algorithm[J]. Journal of Jilin University(Engineering and Technology Edition),2017,47(1):268-273.
[9] 张小飞, 陈华伟, 仇小锋, 等. 阵列信号处理及MATLAB实现[M]. 北京:电子工业出版社,2015.
[10] 张新明, 孙印杰, 郑延斌. 二维直方图准分的Otsu 图像分割及其快速实现[J]. 电子学报, 2011, 39(8), 1778-1784.
Zhang Xin-ming, Sun Yin-jie, Zheng Yan-bin. Precise two-dimensional Otsu's image segmentation and its fast recursive realization[J]. Acta Electronica Sinica, 2011,39(8): 1778-1784.
[11] Nikias C L, Shao M. Signal Processing with Alpha Stable Distribution and Applications[M]. New York: John Wiley & Sons Inc,1995.
[12] Swami A, Sadler B M. On some detection and estimation problems in heavy-tailed noise[J]. Signal Processing, 2002,82(10):1471-1488.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!