吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1964-1968.doi: 10.13229/j.cnki.jdxbgxb201706039

• 论文 • 上一篇    下一篇

基于相似匹配维纳滤波的地震资料噪声压制

李娟1, 孟可心1, 李月1, 刘慧力2   

  1. 1.吉林大学 通信工程学院,长春 130012;
    2.吉林大学 生物与农业工程学院,长春 130022
  • 收稿日期:2016-10-24 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 刘慧力(1970-),男,工程师.研究方向:测控技术及工业电气自动化.E-mail:liuhuili@163.com
  • 作者简介:李娟(1970-),女,副教授,博士.研究方向:地震信号处理.E-mail:ljuan@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41574096)

Seismic signal noise suppression based on similarity matched Wiener filtering

LI Juan1, MENG Ke-xin1, LI Yue1, LIU Hui-li2   

  1. 1.College of Communication and Engineering, Jilin University, Changchun 130012, China;
    2.College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
  • Received:2016-10-24 Online:2017-11-20 Published:2017-11-20

摘要: 针对强噪声背景下地震资料噪声压制困难的问题,提出一种基于地震信号相似性的维纳滤波传递函数优化算法。该算法将待处理资料分块,并依据地震同相轴的时空相似性构建三维相似组。经过低秩近似,信号与噪声差异明显,能够计算得出更为精确的维纳滤波传递函数。经过仿真信号与真实地震资料的对比验证,采用本文优化算法得到的传递函数进行维纳滤波,既能实现随机噪声的有效压制,又能极大地保护信号的有效成分。

关键词: 信息处理技术, 维纳滤波, 块匹配, 奇异值分解

Abstract: Seismic exploration is the main method in oil and gas exploration. It becomes more and more difficult to identify the collected seismic signals, because of a sharp drop in resolution and the Signal to Noise Ratio (SNR). Conventional seismic record processing methods have shown no adaptability to very low SNR. In order to realize the requirement of high SNR, high resolution and high fidelity of seismic data processing in strong noise, this paper proposes a novel method of seismic data noise suppression based on similarity matched Wiener filtering. In this method, based on the local and non-local similarity of seismic events, the whole record is divided into overlapping sub-blocks and the blocks containing similar signals are found out by some distance measures. Then, the low rank matrix is constructed by Singular Value Decomposition (SVD) and the smaller singular values are removed representing noise. The noise in the constructed signal is effectively suppressed. Using this estimation, the Wiener filter is able to obtain a more accurate transfer function. At the same time, the effect of prior information on noise suppression is eliminated. Experiment results illustrate that the proposed method improves the SNR and effectively retains the signal amplitude.

Key words: information processing technology, Wiener filtering, block matching, singular value decomposition

中图分类号: 

  • TN911.7
[1] 李道品. 低渗透砂岩油田开发[M]. 北京:石油出版社,1997.
[2] 张军华,吕宁,田连玉, 等. 地震资料去噪方法技术综合评述[J]. 地球物理学进展,2006,21(2):546-553.
Zhang Jun-hua, Lv Ning, Tian Lian-yu, et al. An overview of the methods and techniques for seismic data noise attenuation[J]. Progression Geophysics,2006,21(2):546-553.
[3] Famoush F A, Mike B, Jyoti B. Noise suppression in surface microseismic data[J]. The Leading Edge,2012,31(12):1496-1501.
[4] 徐宏斌,李庶林,陈际经. 基于小波变换的大尺度岩体结构微震监测信号去噪方法研究[J]. 地震学报,2012,34(1):85-96.
Xu Hong-bin, Li Shu-lin, Chen Ji-jing. A study on method of signal denoising based on wavelet transform for micro-seismicity monitoring in large-scale rockmass structures[J]. Acta Seismologica Sinica,2012,34(1):85-96.
[5] 王梅,侯振杰,吕国玲,等. 基于Ridgelet变换的多尺度去噪算法研究[J]. 微型机与应用,2012,31(2):25-27.
Wang Mei, Hou Zhen-jie, Lv Guo-ling, et al. A multi-scale method for image denoising based on Ridgelet transform[J]. Microcomputer & Its Applications,2012,31(2):25-27.
[6] Srarck J L, Candes E J, Donoho D L. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing,2002,11(6):670-684.
[7] 谢成芳,彭真明,周晶晶,等. 基于Contourlet 变换的地震多属性融合方法[J]. 石油地球物理勘探,2014,49(4):739-744.
Xie Cheng-fang,Peng Zhen-ming,Zhou Jing-jing, et al. Multi attribute fusion method for seismic signal based on contourlet transform[J]. Oil Geophysical Prospecting,2014,49(4):739-744.
[8] Hu H, Sun H, Deng C, et al. Image denoising algorithm based on shearlet transform[J]. Journal of Computer Application,2010,30(6):1562-1564.
[9] 田雅男,李月,林红波,等. 基于频域正则维纳滤波的地震随机噪声压制[J]. 吉林大学学报:工学版,2015,45(6):2043-2048.
Tian Ya-nan, Li Yue, Lin Hong-bo, et al. Frequency-domain regularized wiener filtering for seismic random noise suppression[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(6):2043-2048.
[10] 沈鸿雁,李庆春. 频域奇异值分解(SVD)地震波场去噪[J]. 石油地球物理勘探,2010,45(2):185-189.
Shen Hong-yan, Li Qing-chun. Seismic wave field separation and denoising in linear domain via singular value decomposition (SVD)[J]. Oil Geophysical Prospecting,2010,45(2):185-189.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!