吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (3): 903-911.doi: 10.13229/j.cnki.jdxbgxb20180102
梁方1,2(),尤泳3,4(),王德成3,4,王光辉3,4,贺长彬3,李帅3
Fang LIANG1,2(),Yong YOU3,4(),De‑cheng WANG3,4,Guang‑hui WANG3,4,Chang‑bin HE3,Shuai LI3
摘要:
为降低切根刀具与土壤的相互作用力和功耗,优化刀轴转速与前进速度的匹配关系,通过土槽试验,得到速比(刀尖点线速度与机组行进速度的比值)分别为16.9、20.7、24.5、28.2、32.0时,不同前进速度(0.5、 1、 1.4 m/s)与转速(根据速比与前进速度计算得到)组合下的扭矩、比功耗(单位体积功耗)和总功率。分析发现,同一速比下,对应的扭矩变异系数分别为2.4%、5.2%、1.7%、7.5%、3.9%,对应的比功耗变异系数分别为1.0%、3.4%、8.8%、2.7%、2.7%,这表明在速比一定时,扭矩与比功耗同运动参数组合无关,仅由速比决定。因此,建立了速比与扭矩,速比与比功耗,速比、刀轴转速与总功率的数学关系,并通过速比与切土节距的关系,分析了产生上述规律的原因。根据建立的数学关系,在16~32的速比范围内求其极值,得到在速比分别为27.41和26.31时,扭矩和比功耗分别取得最小值90.79 N·m和6369 kJ/m3;在速比为28、转速取最小值200 r·min-1时,总功率取得最小值2362 W。速比为26.31时,即比功耗取得最小值时,扭矩和总功率均接近最小值(与最小值分别相差1.2%和4.2%),是草地切根作业适宜速比。
中图分类号:
1 | YouYong, WangDe‑cheng, LiuJu‑de. A device for mechanical remediation of degraded grasslands [J]. Soil & Tillage Research, 2012 ,118:1‑10. |
2 | 尤泳,王德成,王光辉. 9QP‑830型草地破土切根机[J]. 农业机械学报,2011,42(10):61‑67. |
YouYong,WangDe‑cheng,WangGuang‑hui. 9QP‑830 soil‑gashing and root‑cutting machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(10):61‑67. | |
3 | 梁方. 草地切根施肥补播复式改良机械的优化设计与试验研究[D]. 北京:中国农业大学工学院,2015. |
LiangFang. Optimization design and experiment study on root‑cutter with fertilization and reseeding compound remediation machine for grassland[D]. Beijing: College of Engineering,China Agricultural University, 2015. | |
4 | SawtschukJ,GalletS, BioretF. Evaluation of the most common engineering methods for maritime cliff‑top vegetation restoration[J]. Ecological Engineering, 2012, 45: 45‑54. |
5 | AniO A, UzoejinwaB B, Ezeama AO, et al. Overview of soil‑machine interaction studies in soil bins[J]. Soil and Tillage Research, 2018,175:13‑27. |
6 | UcgulM, FielkeJ M, SaundersC S. Three‑dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[J]. Biosystems Engineering, 2014,121:105‑117. |
7 | 杨艳山,丁启朔,丁为民,等. 田间原位综合耕作试验台设计与应用[J]. 农业机械学报, 2016, 47(1): 68‑74. |
YangYan‑shan, DingQi‑shuo, DingWei‑min, et al. Design and application of multi‑purpose in‑situ tillage tool testing platform[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(1):68‑74. | |
8 | 熊平原,杨洲,孙志全,等. 旋耕刀三向工作阻力试验及作业参数优化[J]. 农业工程学报, 2017,33(19): 51‑58. |
XiongPing‑yuan, YangZhou, SunZhi‑quan, et al. Experiment on three‑axis working resistances of rotary blade and working parameters optimization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 51‑58. | |
9 | 刘孝民,尤玉锴,周晓艳. 旋耕机运动参数优化问题的讨论[J]. 农业机械学报,1996,27(2):137‑140. |
LiuXiao‑min, YouYu‑kai, ZhouXiao‑yan. The discussion on the optimization of the dynamic parameters of rotary tillage[J]. Transactions of the Chinese Society for Agricultural Machinery, 1996, 27(2):137‑140. | |
10 | 李永磊,宋建农,康小军,等. 双辊秸秆还田旋耕机试验[J]. 农业机械学报,2013,44(6):45‑49. |
LiYong‑lei, SongJian‑nong, KangXiao‑jun, et al. Experiment on twin‑roller cultivator for straw returning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6):45‑69. | |
11 | 李永磊,宋建农,董向前,等. 基于土槽试验台的旋转耕作部件试验装置设计[J]. 农业工程学报,2012,28(17):38‑43. |
LiYong‑lei, SongJian‑nong, DongXiang‑qian, et al. Design of test device for rotary tiller components based on soil bin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17):38‑43. | |
12 | 张秀梅,夏俊芳,张居敏,等. 水旱两用秸秆还田组合刀辊作业性能试验[J]. 农业工程学报,2016,32(9): 9‑15. |
ZhangXiu‑mei, XiaJun‑fang, ZhangJu‑min, et al. Working performance experiment of combination blade roller for straw returning in paddy field and dry land[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(9):9‑15 . | |
13 | MatinM A, FielkeJ M, DesbiollesJ M A. Torque and energy characteristics for strip‑tillage cultivation when cutting furrows using three designs of rotary blade[J]. Biosystems Engineering,2015,129: 329‑340. |
14 | AmbassahN O, FukagawaR. Developing an excavation torque model for dense cohesionless soils[J]. Journal of Terramechanics 2005, 42:83‑98. |
15 | ImanAhmadi. A torque calculator for rotary tiller using the laws of classical mechanics[J]. Soil and Tillage Research, 2017, 165:137‑143. |
16 | ChertkiattipolS, NiyamapaT. Variations of torque and specific tilling energy for different rotary blades[J]. International Agricultural Engineering Journal, 2010,19(3):1‑14. |
17 | KarmakarS, AshrafizadehS R, KushwahaR L. Experimental validation of computational fluid dynamics modeling for narrow tillage tool draft[J]. Journal of Terramechanics,2009,46(6): 277‑283. |
18 | 方在华,张文春,刘夫云. 拖拉机旋耕机组旋耕速比的确定[J]. 农业机械学报,1997,28(1):24‑28. |
FangZai‑hua,ZhangWen‑chun,LiuFu‑yun. Determination of the rototilling speed ratio for tractor rototilling unit[J]. Transactions of the Chinese Society for Agricultural Machinery, 1997, 28(1): 24‑28. | |
19 | 董向前,宋建农,王继承,等. 作业速度比对草地振动松土机作业性能的影响[J]. 江苏大学学报:自然科学版,2014,35(3):301‑305. |
DongXiang‑qian, SongJian‑nong, WangJi‑cheng, et al. Effect of velocity ratio on performance of oscillatory tillage[J]. Journal of Jiangsu University (Nature Science Edition), 2014,35(3):301‑305. | |
20 | HirasawaK, KataokaT, KuboT. Relationship between required power and PTO speed in rotary tiller[J].IFAC Proceedings Volumes, 2013,46(4): 141‑146. |
21 | KheirallaA F, YahyaA, ZohadieM, et al. Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia[J]. Soil and Tillage Research, 2004,78(1): 21‑34. |
22 | AslJ H, SinghS. Optimization and evaluation of rotary tiller blades: computer solution of mathematical relations[J]. Soil & Tillage Research, 2009, 106(1): 1‑7. |
23 | MiszczakM. A torque evaluation for a rotary subsoiler[J]. Soil & Tillage Research , 2005, 84(2): 175‑183. |
24 | 曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995. |
25 | 尤泳. 退化羊草草地机械化破土切根改良技术优化研究[D]. 北京:中国农业大学工学院,2011. |
YouYong. Mechanical remediation technology of degraded grassland (leymus‑chinensis) [D]. Beijing: College of Engineering, China Agricultural University, 2011. | |
26 | 李永磊. 双辊秸秆还田旋耕机理论与试验研究[D]. 北京:中国农业大学工学院,2014. |
LiYong‑lei .Theoretical and experiment study on the twin‑roller cultivator for straw returning[D]. Beijing: College of Engineering, China Agricultural University, 2014. | |
27 | 中华人民共和国国家质检总局. NY/T 52—1987,土壤水分测定法[M]. 北京:中国标准出版社,1987. |
28 | 王益,刘军,王益权,等.黄土高原南部3种农田土壤剖面坚实度的变化规律[J]. 西北农林科技大学学报:自然科学版,2007,35(9):200‑204. |
WangYi, LiuJun,WangYi‑quan, et al. Variation of soil compactness in 3 kinds of farmland soil profile in south Loess Plateau[J]. Journal of Northwest A & F University(Naturnal Science Editon), 2007,35(9): 200‑204. | |
29 | 张淑娟,裘正军,王凤花,等. 农田土壤含水率和坚实度采集仪设计与试验[J]. 农业机械学报,2010,41(9),41(9):75‑79. |
ZhangShu‑juan, QiuZheng‑jun, WangFeng‑hua, et al. Design and test on the field soil moisture and compaction acquisition instrument[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(9):75‑79. | |
30 | 中国农业机械化科学研究院.农业机械设计手册(上)[M].北京:中国农业科学技术出版社,2007. |
31 | 李宝筏. 农业机械学[M]. 北京:中国农业出版社,2003. |
[1] | 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547. |
[2] | 贾洪雷, 王万鹏, 陈志, 庄健, 王文君, 刘慧力. 基于土壤坚实度的仿形弹性镇压辊镇压力实时测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1169-1175. |
[3] | 陈东辉, 吕建华, 龙刚, 张宇晨, 常志勇. 基于ADAMS的半悬挂式农业机组静侧翻稳定性[J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183. |
[4] | 秦大同, 林毓培, 胡建军, 郭子涵. 基于无级变速器速比控制的插电式混合动力汽车再生制动控制策略[J]. 吉林大学学报(工学版), 2018, 48(2): 380-386. |
[5] | 王扬, 吕凤妍, 徐天月, 于建群. 大豆籽粒形状和尺寸分析及其建模[J]. 吉林大学学报(工学版), 2018, 48(2): 507-517. |
[6] | 贾洪雷, 郑嘉鑫, 袁洪方, 郭明卓, 王文君, 于路路. 大豆播种机双V型筑沟器设计与试验[J]. 吉林大学学报(工学版), 2017, 47(1): 323-331. |
[7] | 肖志锋, 乐建波, 吴南星, 刘相东. 操作压力对过热蒸汽流化床干燥的影响[J]. 吉林大学学报(工学版), 2015, 45(4): 1375-1380. |
[8] | 曾义聪,徐海良,李峰,吴波. 鼓形误差对高压辊磨机组合辊承载扭矩的影响[J]. 吉林大学学报(工学版), 2015, 45(2): 466-472. |
[9] | 张金波,佟金,马云海. 仿生肋条结构表面深松铲刃的磨料磨损特性[J]. 吉林大学学报(工学版), 2015, 45(1): 174-180. |
[10] | 齐龙, 谭祖庭, 马旭, 陈国锐, 谢俊锋, 邝健霞. 气动振动式匀种装置工作参数的优化及试验[J]. 吉林大学学报(工学版), 2014, 44(6): 1684-1691. |
[11] | 雷雨龙, 李兴忠, 杨成, 孙少华, 吕二华. TC+AMT中湿式多片离合器带排扭矩及其对换档同步过程的影响[J]. 吉林大学学报(工学版), 2014, 44(01): 22-28. |
[12] | 齐龙, 廖文强, 马旭, 林建衡, 区志行, 詹志勋. 水田小型除草机器人平台控制系统设计与测试[J]. 吉林大学学报(工学版), 2013, 43(04): 991-996. |
[13] | 翟治芬, 严昌荣, 张建华, 张燕卿, 刘爽. 基于蚁群算法和支持向量机的节水灌溉技术优选[J]. 吉林大学学报(工学版), 2013, 43(04): 997-1003. |
[14] | 张强, 张璐, 刘宪军, 于路路, 贾洪雷. 基于有限元法的仿生钩形深松铲耕作阻力[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 117-121. |
[15] | 王增辉, 黄东岩, 李卓识, 贾洪雷, 万宝成. 工作参数对旋耕碎茬通用刀片功率消耗的影响[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 122-125. |
|