吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1375-1380.doi: 10.13229/j.cnki.jdxbgxb201504050

• • 上一篇    

操作压力对过热蒸汽流化床干燥的影响

肖志锋1, 乐建波1, 吴南星1, 刘相东2   

  1. 1.景德镇陶瓷学院 机电学院,江西 景德镇 333403;
    2.中国农业大学 工学院,北京 100083
  • 收稿日期:2013-11-07 出版日期:2015-07-01 发布日期:2015-07-01
  • 作者简介:肖志锋(1980-),男,副教授,博士.研究方向:现代干燥技术及理论.E-mail:cauxiao@126.com
  • 基金资助:
    国家自然科学基金项目(51306083); 江西省自然科学基金项目(20132BAB216010)

Effect of operation pressure on superheated steam fluidized bed drying

XIAO Zhi-feng1, LE Jian-bo1, WU Nan-xing1, LIU Xiang-dong2   

  1. 1.School of Mechanical and Electronic Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China;
    2.College of Engineering, China Agricultural University, Beijing 100083, China
  • Received:2013-11-07 Online:2015-07-01 Published:2015-07-01

摘要: 针对操作压力对过热蒸汽流化床干燥过程中蒸汽-颗粒物料两相流动特性、传热传质特性的影响具有非线性特征问题,基于油菜籽过热蒸汽流化床干燥过程的轴对称二维非稳态数学模型,仿真研究了操作压力对颗粒物料干燥动力学的影响规律,对负压、常压附近和高压环境下操作压力与最大干燥速率之间的关系进行了定量分析,并得到了进口过热蒸汽温度和流速设定条件下颗粒物料过热蒸汽流化床干燥的最佳操作压力参数值。数值模拟结果表明:进口过热蒸汽温度358 K、流速2.5 m/s、颗粒物料直径1.0 mm时,过热蒸汽流化床干燥最佳操作压力为0.02 MPa;进口过热蒸汽温度403 K、流速2.5 m/s、颗粒物料直径1.0 mm时,最佳干燥操作压力为0.10 MPa;进口过热蒸汽温度443 K、流速2.0 m/s、颗粒物料直径2.0 mm时,最佳干燥操作压力为0.2 MPa。

关键词: 农业工程, 最佳操作压力, 过热蒸汽流化床干燥, 数值模拟

Abstract: In superheated steam fluidized bed drying, the operation pressure significantly influences the heat and mass transfer and the steam-particle two-phase flow with nonlinear characteristics. Base on the two-dimensional unsteady model of drying process of rapeseeds, numerical simulation was carried out to investigate the influence of operation pressure on the kinetics of superheated steam fluidized bed drying. Under negative pressure, near atmospheric pressure and high pressure, the relationship between the operation pressure and maximum drying rate was quantitatively analyzed respectively. For superheated steam fluidized bed drying of granular products with the inlet steam temperature and flow rate, the values of the optimal operation pressure were obtained. Simulation results show that, with inlet steam temperature of 358 K, flow velocity of 2.5 m/s and particle diameter of 1.0 mm, the optimal pressure is 0.02 MPa; with inlet steam temperature of 403 K, flow velocity of 2.5 m/s and particle diameter of 1.0 mm, the optimal pressure is 0.1 MPa; with inlet steam temperature of 443 K, flow velocity of 2.0 m/s and particle diameter of 2.0 mm, the optimal pressure is 0.2 MPa.

Key words: agricultural engineering, optimum operating pressure, superheated steam fluidized bed drying, numerical simulation

中图分类号: 

  • S226.6
[1] 潘永康, 王喜忠, 刘相东. 现代干燥技术[M]. 2版.北京: 化学工业出版社, 2007.
[2] Kudra T, Mujumdar A S. Advanced Drying Technologies[M]. New York:Marcel Dekker Inc, 2002.
[3] Mujumdar A S. Superheated Steam Drying. Handbook of Industrial Drying[M].New York:Hemisphere Publishing Corporation, 1995.
[4] Picado A, Martínez J. Mathematical modeling of a continuous vibrating fluidized bed dryer for grain[J]. Drying Technology, 2012, 30(13): 1469-1481.
[5] 肖志锋. 过热蒸汽流化床干燥过程数值模拟及试验[D]. 北京: 中国农业大学, 2008. Xiao Zhi-feng. Numerical simulation and experimental study on fluidized bed drying process with superheated Steam[D]. Beijing: China Agricultural University, 2008.
[6] 宫英振, 牛海霞, 肖志锋, 等. 油菜籽过热蒸汽流化床常压干燥过程的数学模拟[J]. 农业工程学报, 2010, 26(4): 351-356. Gong Ying-zhen, Niu Hai-xia, Xiao Zhi-feng, et al. Simulation on rapeseed drying in superheated steam fluidized bed at atmosphere pressure[J]. Transactions of the CSAE, 2010, 26(4): 351-356.
[7] Shi Y C, Xiao Z F, Huang X L, et al. Numerical simulation on superheated steam fluidized bed drying: II. experiments and numerical simulation[J]. Drying Technology, 2011, 29(11): 1332-1342.
[8] Tatemoto Y, Yanoa S, Mawatarib Y, et al. Drying characteristics of porous material immersed in a bed of glass beads fuidized by superheated steam under reduced pressure[J]. Chemical Engineering Science, 2007, 62(1-2): 471-480.
[9] Elustondo D M, Mujumdar A S. Optimum operating conditions in drying foodstuffs with superheated steam[J]. Drying Technology, 2002, 20(2): 381-402.
[10] Urbicain M. Drying with superheated steam: maximum drying rate as a linear function of pressure[J]. Chemical Engineering Journal, 2002, 86: 69-74.
[11] Yang D Y, Wang Z H, Huang X L, et al. Numerical simulation on superheated steam fluidized bed drying: i. model construction[J]. Drying Technology,2011, 29(11): 1325-1331.
[12] Xiao Z F, Yang D Y, Yuan Y J, et al. Fractal pore network simulation on the drying process of porous media[J]. Drying Technology, 2008(6): 651-665.
[13] Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds, kinetic theory approach[C]∥Proceedings of the 7th Engineering Foundation Conference on Fluidization, Brisbane, Australia, 1992.
[14] 周力行. 湍流气粒两相流动和燃烧的理论与数值模拟[M]. 北京: 科学出版社, 1994.
[15] Sakamoto K, Katsuoka T. Model of through-flow drying for beds packed with tobacco cut-filler in a flow of air or superheated steam[J]. Food Science and Technology Research, 2012, 18(5): 623-629.
[16] 斯米特·E, 格里古尔·U. 国际单位制的水和水蒸汽性质[M]. 赵兆颐译. 北京: 水利电力出版社, 1983.
[1] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[2] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[3] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547.
[4] 贾洪雷, 王万鹏, 陈志, 庄健, 王文君, 刘慧力. 基于土壤坚实度的仿形弹性镇压辊镇压力实时测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1169-1175.
[5] 陈东辉, 吕建华, 龙刚, 张宇晨, 常志勇. 基于ADAMS的半悬挂式农业机组静侧翻稳定性[J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183.
[6] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[7] 王扬, 吕凤妍, 徐天月, 于建群. 大豆籽粒形状和尺寸分析及其建模[J]. 吉林大学学报(工学版), 2018, 48(2): 507-517.
[8] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[9] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[10] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[11] 王宏朝, 单希壮, 杨志刚. 地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟[J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
[12] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
[13] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
[14] 谷诤巍, 吕萌萌, 张文学, 雷娇娇, 徐虹. 中国标准动车组前端三维蒙皮件冲压成形[J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
[15] 贾洪雷, 郑嘉鑫, 袁洪方, 郭明卓, 王文君, 于路路. 大豆播种机双V型筑沟器设计与试验[J]. 吉林大学学报(工学版), 2017, 47(1): 323-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!