吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (3): 953-962.doi: 10.13229/j.cnki.jdxbgxb20180160
Jun CHEN1,2(),Qi⁃feng ZHANG1(),Ai⁃qun ZHANG1,3,Du⁃si CAI3
摘要:
为提高深渊鱼类观测效率,针对传统预编程式观测方法无法感知目标的不足,提出了一种基于鱼类识别的自主观测方法。首先,通过改进的背景差分法快速分割运动目标;其次,结合深渊生物特点提出了基于Fisher判别函数的形状特征提取方法,然后使用粒子群优化(PSO)算法的支持向量机(SVM)分类法实现了鱼类的识别。最后,设计了深渊鱼类的自主观测算法,并提出了一种观测效率的评价方法。使用深渊原位观测视频进行模拟观测实验的结果表明,本文算法可有效提高观测效率。
中图分类号:
1 | JamiesonA J, FujiiT, MayorD J, et al. Hadal trenches: the ecology of the deepest places on earth[J]. Trends in Ecology & Evolution, 2010,25(3):190⁃197. |
2 | LinleyT D, GerringerM E, YanceyP H, et al. Fishes of the hadal zone including new species, in situ, observations and depth records of Liparidae[J]. Deep Sea Research Part I Oceanographic Research Papers, 2016, 114:99⁃110. |
3 | LinleyT D, StewartA L , McmillanP J, et al. Bait attending fishes of the abyssal zone and hadal boundary: Community structure, functional groups and species distribution in the Kermadec, New Hebrides and Mariana trenches[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 121:38⁃53. |
4 | JamiesonA. The hadal zone: life in the deepest oceans[M]. Cambridge UK: Cambridge University Press, 2015. |
5 | BaileyD M, KingN J, PriedeI G. Cameras and carcasses: historical and current methods for using artificial food falls to study deep⁃water animals[J]. Marine Ecology Progress Series, 2007, 350: 179⁃191. |
6 | WhitmarshS K, FairweatherP G, HuveneersC. What is big BRUVver up to? Methods and uses of baited underwater video[J]. Reviews in Fish Biology & Fisheries, 2016: 1⁃21. |
7 | JamiesonA J, FujiiT, SolanM, et al. HADEEP: free⁃falling landers to the deepest places on earth[J]. Marine Technology Society Journal, 2009, 43(5):151⁃160. |
8 | WHOI. HADal Ecosystem Studies[EB/OL]. 2018-01-10.https:⫽web.whoi.edu/hades/. |
9 | JamiesonA J, KilgallenN M, RowdenA A, et al. Bait⁃attending fauna of the Kermadec Trench, SW Pacific Ocean: evidence for an ecotone across the abyssal–hadal transition zone[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(1):49⁃62. |
10 | JamiesonA J, PriedeI G, CraigJ. Distinguishing between the abyssal macrourids Coryphaenoides yaquinae and C. armatus from in situ photography[J]. Deep Sea Research Part I: Oceanographic Research Paper, 2012, 64:78⁃85. |
11 | StaufferC, GrimsonW E L. Adaptive background mixture models for real⁃time tracking[C]⫽IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Piscataway, IEEE, 1999. |
12 | PiccardiM. Background subtraction techniques: a review[C]⫽IEEE International Conference on Systems, Man and Cybernetics, Piscataway, IEEE, 2005. |
13 | 刘鑫, 刘辉, 强振平, 等. 混合高斯模型和帧间差分相融合的自适应背景模型[J]. 中国图象图形学报, 2008, 13(4):729⁃734. |
LiuXin, LiuHui, QiangZhen⁃ping, et al. Adaptive Background Modeling Based on Mixture Gaussian Model and Frame Subtraction[J]. Journal of Image and Graphics, 2008, 13(4):729⁃734. | |
14 | HsiaoY H, ChenC C, LinS I, et al. Real⁃world underwater fish recognition and identification, using sparse representation[J]. Ecological Informatics, 2014, 23:13⁃21. |
15 | SpampinatoC, GiordanoD, SalvoR D, et al. Automatic fish classification for underwater species behavior understanding[C]⫽ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams. ACM Paper, 2010:45⁃50. |
16 | SunX, ShiJ, DongJ, et al. Fish recognition from low⁃resolution underwater images[C]⫽International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, Datong, China, 2016:15⁃17. |
17 | ChenJ, ZhangQ, ZhangA, et al. 7000M lander design for hadal research[C]⫽OCEANS, St. John's, NL, Canada, 2014:1⁃4. |
18 | ChenJ, ZhangQ, ZhangA, et al. Sea trial and free⁃fall hydrodynamic research of a 7000⁃meter lander[C]⫽OCEANS, Piscataway, Washington, DC,USA,2015:1⁃5. |
19 | 陈俊, 张奇峰, 李俊,等. 深渊着陆器技术研究及马里亚纳海沟科考应用[J]. 海洋技术学报, 2017, 36(1):63⁃69. |
ChenJun, ZhangQi⁃feng, LiJun, et al. Research on the application of the hadal lander technology in the mariana trench[J]. Journal of Ocean Technology, 2017, 36(1):63⁃69. | |
20 | 曾祥进, 黄心汉, 王敏. 不变矩的改进支持向量机在显微目标识别中的应用研究[J]. 机器人, 2009,31(2): 118⁃123. |
ZengXiang⁃jin, HuangXin⁃han, WangMin. Application of invariant moment's improved support vector machine to micro⁃target identification[J]. Robot, 2009,31(2): 118⁃123. | |
21 | HuM K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962,8(2): 179⁃187. |
22 | 李强, 薛开, 徐贺, 等. 基于振动采用支持向量机方法的移动机器人地形分类[J]. 机器人, 2012, 34(6): 660⁃667. |
LiQiang, XueKai, XuHe, et al. Vibration⁃based terrain classification for mobile robots using support vector machine[J]. Robot, 2012, 34(6): 660⁃667. | |
23 | 陈建华, 奚如如, 王兴松, 等. 外骨骼机器人的非结构地面行走步态分类算法[J]. 机器人, 2017, 39(4): 505⁃513. |
ChenJian⁃hua, XiRu⁃ru, WangXing⁃song, et al. Walking gait classification algorithm for exoskeleton robot on unstructured ground[J]. Robot, 2017, 39(4): 505⁃513. | |
24 | Azimi⁃SadjadiM R, YaoD, JamshidiA A, et al. Underwater target classification in changing environments using an adaptive feature mapping[J]. IEEE Transactions on Neural Networks, 2002, 13(5):1099⁃1111. |
[1] | 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365. |
[2] | 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935. |
[3] | 蔡振闹, 吕信恩, 陈慧灵. 基于反向细菌优化支持向量机的躯体化障碍预测模型[J]. 吉林大学学报(工学版), 2018, 48(3): 936-942. |
[4] | 袁哲明, 张弘杨, 陈渊. 基于特征选择和支持向量机的HIV-1型蛋白酶剪切位点预测[J]. 吉林大学学报(工学版), 2017, 47(2): 639-646. |
[5] | 梁士利, 魏莹, 潘迪, 张玲, 许廷发, 王双维. 基于语谱图行投影的特定人二字汉语词汇识别[J]. 吉林大学学报(工学版), 2017, 47(1): 294-300. |
[6] | 赵云鹏, 于天来, 焦峪波, 宫亚峰, 宋刚. 异形桥梁损伤识别方法及参数影响分析[J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866. |
[7] | 商强, 杨兆升, 张伟, 邴其春, 周熙阳. 基于奇异谱分析和CKF-LSSVM的短时交通流量预测[J]. 吉林大学学报(工学版), 2016, 46(6): 1792-1798. |
[8] | 周炳海, 徐佳惠. 基于支持向量机的多载量小车实时调度[J]. 吉林大学学报(工学版), 2016, 46(6): 2027-2033. |
[9] | 卢英, 王慧琴, 秦立科. 高大空间建筑火灾精确定位方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073. |
[10] | 马知行, 赵琦, 张浩. 基于傅立叶分析的持家基因预测模型[J]. 吉林大学学报(工学版), 2016, 46(5): 1639-1643. |
[11] | 王品, 何璇, 吕洋, 李勇明, 邱明国, 刘书君. 基于多特征支持向量机和弹性区域生长的膝软骨自动分割[J]. 吉林大学学报(工学版), 2016, 46(5): 1688-1696. |
[12] | 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102. |
[13] | 申铉京, 翟玉杰, 卢禹彤, 王玉, 陈海鹏. 基于信道补偿的说话人识别算法[J]. 吉林大学学报(工学版), 2016, 46(3): 870-875. |
[14] | 宗芳, 王占中, 贾洪飞, 焦玉玲, 吴杨. 基于支持向量机的通勤日活动-出行持续时间预测[J]. 吉林大学学报(工学版), 2016, 46(2): 406-411. |
[15] | 张浩, 刘海明, 吴春国, 张艳梅, 赵天明, 李寿涛. 基于多特征融合的绿色通道车辆检测判定[J]. 吉林大学学报(工学版), 2016, 46(1): 271-276. |
|