吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 174-182.doi: 10.13229/j.cnki.jdxbgxb20180971

• 交通运输工程·土木工程 • 上一篇    

基于动水冲刷作用的沥青混合料短期水损害特性

王英1(),李萍1(),念腾飞1,姜继斌1,2   

  1. 1. 兰州理工大学 土木工程学院,兰州 730050
    2. 中国市政工程西北设计研究院有限公司,兰州 730030
  • 收稿日期:2018-08-13 出版日期:2020-01-01 发布日期:2020-02-06
  • 通讯作者: 李萍 E-mail:hylnuu@163.com;lzlgliping@126.com
  • 作者简介:王英(1986-),女,博士研究生. 研究方向:道路材料. E-mail: hylnuu@163.com
  • 基金资助:
    国家自然科学基金项目(51868047);兰州理工大学建工七七校友奖励基金项目(TJ2018-G04)

Short-term water damage characteristics of asphalt mixture based on dynamic water scour effect

Ying WANG1(),Ping LI1(),Teng-fei NIAN1,Ji-bin JIANG1,2   

  1. 1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    2. China Municipal Engineering Northwest Design Institute, Lanzhou 730030, China
  • Received:2018-08-13 Online:2020-01-01 Published:2020-02-06
  • Contact: Ping LI E-mail:hylnuu@163.com;lzlgliping@126.com

摘要:

针对车辆荷载引起的动水冲刷作用,设计开发了一种模拟动水冲刷的试验装置,结合冻融循环试验,对动水冲刷与静态浸水模式下沥青混合料的空隙率、吸水率以及劈裂强度等技术指标进行测试,并借助CT扫描试验,从微观的角度探讨动水冲刷作用下沥青混合料的短期水损害机理。试验结果表明:随着冻融循环次数的递增,动态冲刷浸水模式和静态浸水模式作用下的沥青混合料试件空隙率增幅分别为47.62%和22.5%;吸水率增幅分别为263.2%和86.4%,冻融劈裂强度比(TSR)降幅分别为34.0%和24.9%,动水冲刷作用会加剧沥青混合料物理和力学性能的衰退。CT图像分析表明:随着冻融循环次数的增加,混合料试件的内部产生了新的空隙,试件外缘集料存在不同程度的剥落现象;动水冲刷作用会加剧水体对沥青薄膜的机械侵蚀速率,加速沥青的剥离和细集料的流失,导致原有空隙体积的进一步增大,混合料抗水损害性能下降更为显著。

关键词: 道路工程, 沥青混合料, 水损害, 动水冲刷, 冻融循环, 空隙率

Abstract:

The dynamic water scouring effect caused by the vehicle load was investigated with a self-designed apparatus in this paper. The void ratio, water absorption and split tensile strength of asphalt mixture of AC-13 were monitored during the freeze-thaw cycle test by two different immersion modes (static immersion mode and dynamic scouring immersion mode). The microstructure changes were also tested with the aid of X-ray computed tomography (CT) to explore the mechanism of water damage of asphalt mixture both from the macroscopic and mesoscopic points of view. The experimental results show that with the increase of freezing-thawing cycles, the void rate under dynamic scouring mode and static immersion mode increases by 47.62% and 22.5%, respectively, and the water absorption rate increases by 263.2% and 86.4%, respectively. The freeze-thaw splitting tensile strength ratio (TSR) declines by 34% and 24.9%, respectively. The CT images analysis reveals that new frost-heave voids are produced in the inner part of mixtures, and some of the aggregates are also spalled at the outer edge. Dynamic water scouring will accelerate the shedding of fine aggregates and expand the volume of voids correspondingly. The deterioration of the anti-water property of the mixture under dynamic water scouring was more obvious.

Key words: road engineering, asphalt mixture, water damage, dynamic water scour, freeze-thaw cycle, void ratio

中图分类号: 

  • U414

图1

动水冲刷模拟试验装置示意图"

图2

短期水损害室内模拟试验流程图"

图3

AC?13合成级配曲线"

图4

空隙率随冻融循环次数的变化过程"

图5

空隙率相对增量随冻融循环次数的变化过程"

图6

吸水率随循环次数的变化过程"

图7

空隙率(吸水率)平均增长率随循环次数的变化"

图8

劈裂强度比随循环次数的变化过程"

图9

冻融损伤量随循环次数的变化过程"

图10

不同冻融次数下“P”模式以及“S”模式混合料试件CT扫描图片"

1 Kringos N , Scarpas A . Physical and mechanical moisture susceptibility of asphaltic mixture[J]. International Journal of Solids and Structures, 2008, 45(9): 2671-2685.
2 Varveri A , Avgerinopoulos S , Scarpas A . Experimental evaluation of long-and short-term moisture damage characteristics of asphalt mixtures[J]. Road Materials and Pavement Design, 2015, 17(1): 168-186.
3 Kutay M E , Aydilek A H . Pore pressure and viscous shear stress distribution due to water flow within asphalt pore structure[J]. Computer-Aided Civil and Infrastructure Engineering, 2009, 24(3): 212-224.
4 Gao Jun-qi , Guo Cheng-cheng , Liu Yu-tao . Measurement of pore water pressure in asphalt pavement and its effects on permeability[J]. Measurement, 2015, 62: 81-87.
5 Lei Y , Hu X , Wang H , et al . Effects of vehicle speeds on the hydrodynamic pressure of pavement surface: measurement with a designed device[J]. Measurement, 2017, 98: 1-9.
6 王聪, 马飞, 马威, 等 . 基于车载平台的车路空气动力场测量装置研究[J]. 农业机械学报, 2014, 45(8): 8-13.
Wang Cong , Ma Fei , Ma Wei , et al . Development of a vehicle-mounted testing device for aerodynamic field around wheels[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 8-13.
7 Jiang Wang-heng , Zhang Xiao-ning , Li Zhi . Simulation test of the dynamic water pressure of asphalt concrete[J]. Journal of Highway and Transportation Research and Development, 2013, 7(1): 23-27.
8 汤潍泽, 欧金秋, 崔新壮, 等 . 车载引起的沥青路面内动水压力现场试验研究[J]. 山东大学学报:工学版, 2015, 45(6): 84-90, 106.
Tang Wei-ze , Jing-qiu Ou , Cui Xin-zhuang ,et a1 . Field test and research on vehicle load induced dynamic pore pressure in asphalt pavement[J]. Journal of Shandong University(Engineering Science), 2015, 45(6): 84-90, 106.
9 董泽蛟, 谭忆秋, 曹丽萍, 等 . 水-荷载耦合作用下沥青路面孔隙水压力研究[J]. 哈尔滨工业大学学报, 2007, 39(10): 1614-1617.
Dong Ze-jiao , Tan Yi-qiu , Cao Li-ping , al et , Research on pore pressure within asphalt pavement under the coupled moisture-loading action [J]. Journal of Harbin Institute of Technology, 2007, 39(10): 1614-1617.
10 交通部公路科学研究院 . JTG E20—2011公路工程沥青及沥青混合料试验规程[M]. 北京:人民交通出版社, 2011.
11 念腾飞, 李萍, 林梅 . 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报:工学版, 2018, 48(4): 1045-1054.
Teng-fei Nian , Li Ping , Lin Mei . Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(4): 1045-1054.
12 Jr Cooley L A , Prowell B D , Brown E R . Issues pertaining to the permeability characteristics of coarse-graded superpave mixes[J]. Association of Asphalt Paving Technology, 2002, 71: 1-29.
13 易军艳 . 基于界面行为的多孔沥青混合料冻融损伤特性研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2012.
Yi Jun-yan . Study on freeze-thaw damage characteristics of porous asphalt mixtures based on interfacial behaviors[D]. Harbin: School of Transportation Science and Engineering, Harbin Institute of Technology, 2012.
14 郑健龙, 张洪刚, 钱国平, 等 . 水温冻融循环条件下沥青混合料性能衰变的规律[J]. 长沙理工大学学报:自然科学版, 2010, 7(1): 7-11.
Zheng Jian-long , Zhang Hong-gang , Qian Guo-ping , et al . Attenuated performance of asphalt mixture under freeze-thaw cycle with water and temperature[J]. Journal of Changsha University of Science and Technology(Natural Science),2010, 7(1): 7-11.
15 Xu H , Guo W , Tan Y . Permeability of asphalt mixtures exposed to freeze–thaw cycles[J]. Cold Regions Science and Technology, 2016, 123: 99-106.
16 李萍, 念腾飞, 魏定邦, 等 . FTIR定量分析方法与老化沥青流变参数新探[J]. 华中科技大学学报:自然科学版, 2018, 46(2): 34-39.
Li Ping , Teng-fei Nian , Wei Ding-bang , et al . Quantitative analysis method for FTIR and exploration on rheological parameters of aging asphalt binders[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2018, 46(2): 34-39.
[1] 王芳,李晓光,郭慧,胡佳. 基于驾驶员视觉兴趣区的沙漠草原公路曲线间直线段线形指标优化[J]. 吉林大学学报(工学版), 2020, 50(1): 114-120.
[2] 万平,吴超仲,马晓凤. 基于ROC曲线和驾驶行为特征的驾驶愤怒强度判别阈值[J]. 吉林大学学报(工学版), 2020, 50(1): 121-131.
[3] 朱春凤,程永春,梁春雨,肖波. 硅藻土⁃玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173.
[4] 狄胜同,贾超,乔卫国,李康,童凯. 橡胶集料混凝土细观损伤特性的加载速率效应[J]. 吉林大学学报(工学版), 2019, 49(6): 1900-1910.
[5] 张云龙,周刘光,王静,吴春利,吕翔. 冻融对粉砂土力学特性及路堤边坡稳定性的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1531-1538.
[6] 彭勇,高华,万蕾,刘贵应. 沥青混合料劈裂强度影响因素数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1521-1530.
[7] 李晓珍,柳俊哲,戴燕华,贺智敏,巴明芳,李玉顺. 碳化作用下水泥浆内亚硝酸根离子的含量分布[J]. 吉林大学学报(工学版), 2019, 49(4): 1162-1168.
[8] 于天来,李海生,黄巍,王思佳. 预应力钢丝绳加固钢筋混凝土梁桥抗剪性能[J]. 吉林大学学报(工学版), 2019, 49(4): 1134-1143.
[9] 黄晓明,曹青青,刘修宇,陈嘉颖,周兴林. 基于路表分形摩擦理论的整车雨天制动性能模拟[J]. 吉林大学学报(工学版), 2019, 49(3): 757-765.
[10] 王静,吕翔,曲肖龙,钟春玲,张云龙. 路基土抗剪强度与化学及矿物成分的关系[J]. 吉林大学学报(工学版), 2019, 49(3): 766-772.
[11] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[12] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[13] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[14] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[15] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!