吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 641-647.doi: 10.13229/j.cnki.jdxbgxb20181001

• 交通运输工程·土木工程 • 上一篇    

微生物矿化作用下混凝土裂缝修复与性能补偿

袁杰1(),陈歆1,2(),何虹霖1,杨博1,朱小骏2,3   

  1. 1.哈尔滨工业大学 交通科学与工程学院, 哈尔滨 150090
    2.苏交科集团股份有限公司 在役长大桥梁安全与健康国家重点实验室, 南京 210019
    3.河海大学 土木与交通学院,南京 210098
  • 收稿日期:2018-09-29 出版日期:2020-03-01 发布日期:2020-03-08
  • 通讯作者: 陈歆 E-mail:hityuanj@163.com;xin.chen@alu.hit.edu.cn
  • 作者简介:袁杰(1971-),男,副教授,博士.研究方向:道路工程材料.E-mail:hityuanj@163.com
  • 基金资助:
    国家自然科学基金项目(51278157);江苏省青年基金项目(BK20160144)

Repair and rejuvenation of cracked concrete by microbiologically⁃induced calcite⁃precipitation

Jie YUAN1(),Xin CHEN1,2(),Hong-lin HE1,Bo YANG1,Xiao-jun ZHU2,3   

  1. 1.School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
    2.State Key Laboratory of Safety and Health for In?service Long Span Bridges, JSTI Group, Nanjing 210019, China
    3.College of Civil Engineering and Transportation Engineering, Hohai University, Nanjing 210098, China
  • Received:2018-09-29 Online:2020-03-01 Published:2020-03-08
  • Contact: Xin CHEN E-mail:hityuanj@163.com;xin.chen@alu.hit.edu.cn

摘要:

为全面评价基于微生物矿化的混凝土修补效率与效果,采用巴氏生孢八叠球菌,通过产物晶相分析优选钙源,配制微生物-尿素-钙源体系修复液,修复混凝土裂缝并扫描评价物理封堵效率;然后对不同裂缝状态下的混凝土进行吸水率、抗氯离子渗透性、抗冻性和抗硫酸盐侵蚀等试验,考察微生物矿化作用对开裂混凝土耐久性的补偿效果。结果表明:硝酸钙是良好钙源,沉积的方解石封闭了裂缝表面并填充裂缝体积50%以上,修复后混凝土抗渗性恢复显著,抗冻性与抗硫酸盐侵蚀性能也有所补偿。本文推荐了微生物技术的钙源,评价了该修补方法的效率,并肯定了其对开裂混凝土耐久性的补偿效果。

关键词: 建筑材料, 混凝土, 修复, 微生物, 耐久性

Abstract:

The research was conducted to comprehensively study the efficiency and effectiveness of bacteria-based concrete repair technology. In the research, Sporosarcina pasteurii were applied as working bacteria in healing agent, the calcium source was selected by analysis of product crystalline phases. The prepared healing agent was used to repair cracked concrete specimens. After repair computed tomography was applied to evaluate the physical sealing. Specimens with and without cracking and specimens with crack-sealing were processed, and a series of durability tests were conducted to study the sealing caused rejuvenation, including water absorption, chloride penetration resistance, frost resistance and sulfate attack resistance. Results show that calcium nitrate is suitable as calcium source, which reacts with hydrolysed urea to entirely seal the crack surface and can fill more than half of the crack space. The impermeability of the cracked concrete is greatly rejuvenated after repair, and both frost resistance and sulfate attack resistance are compensated in certain scale. This research has recommended calcium nitrate as calcium source for bacteria-based mineralization, evaluated sealing efficiency, and importantly, confirmed a good rejuvenation in concrete durability.

Key words: building materials, concrete, repair, microorganism, durability

中图分类号: 

  • TU57+8

图1

试件表面处理"

图2

产物晶相分析结果"

图3

试件修复前、后CT扫描图像"

图4

各层修复前、后的空隙面积"

图5

48 h吸水率"

图6

裂缝在冻融循环条件下的表现"

图7

冻融循环下质量损失率"

图8

冻融循环下抗压强度变化"

图9

裂缝在硫酸盐侵蚀下的表现"

图10

硫酸盐侵蚀下质量损失率变化"

图11

硫酸盐侵蚀下抗压强度变化"

1 王铁成, 董春敏, 王菘. 配高强箍筋的T形截面混凝土梁的斜裂缝宽度试验研究[J]. 吉林大学学报: 工学版, 2006, 36(4): 451-455.
Wang Tie-cheng, Dong Chun-min, Wang Song. Experimental study on diagonal crack widths of reinforced concrete T-Beams with high strength stirrup[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(4): 451-455.
2 李中华, 巴恒静. 混凝土的抗盐冻性能[J]. 吉林大学学报: 工学版, 2009, 39(4): 926-931.
Li Zhong-hua, Ba Heng-jing. Freeze-deicing salt resistance of concrete[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(4): 926-931.
3 宿晓萍, 王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报: 工学版, 2015, 45(1): 112-120.
Su Xiao-ping, Wang Qing. Corrosion damage of concrete under multi-salt soaking, freezing-thawing and dry-wet cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(1): 112-120.
4 Belie N D. Application of bacteria in concrete: a critical review[J]. RILEM Technical Letters, 2016(1): 56-61.
5 Achal V, Mukerjee A, Sudhakara R M. Biogenic treatment improves the durability and remediates the cracks of concrete structures[J]. Construction & Building Materials, 2013, 48(19): 1-5.
6 陈歆, 韩依璇, 张国荣, 等. 巴氏生孢八叠球菌用作混凝土裂缝愈合剂的活性研究[J]. 建筑材料学报, 2018, 21(3): 484-490.
Chen Xin, Han Yi-xuan, Zhang Guo-rong, et al. Activity investigation of Sporosarcina pasteurii as concrete crack healing agent[J]. Journal of Building Materials, 2018, 21(3): 484-490.
7 贾强, 张鑫, 侯宏涛, 等. 微生物沉积碳酸钙修复混凝土裂缝的现场试验[J]. 建筑材料学报, 2013, 16(4): 667-672.
Jia Qiang, Zhang Xin, Hou Hong-tao, et al. Field experiment of crack repair by microbiological precipitation of CaCO3[J]. Journal of Building Materials, 2013, 16(4): 667-672.
8 贾强, 赵程程, 孙增斌. 微生物沉积碳酸钙修复混凝土裂缝抗渗性研究[J]. 应用基础与工程科学学报, 2017, 25(1): 141-148.
Jia Qiang, Zhao Cheng-cheng, Sun Zeng-bin. Bearing pressure experimental research of the concrete cracks after bioremedying[J]. Journal of Basic Science and Engineering, 2017, 25(1): 141-148.
9 Li W, Dong B, Yang Z, et al. Recent advances in intrinsic self-healing cementitious materials[J/OL]. (2018-03-25). [2019-09-29].
10 Alazhari M, Sharma T, Heath A, et al. Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete[J]. Construction and Building Materials, 2018, 160: 610-619.
11 李沛豪, 屈文俊, 徐德强, 等. 大理石历史建筑遗产的细菌修复加固[J]. 华南理工大学学报: 自然科学版, 2009, 37(9): 36-41.
Li Pei-hao, Qu Wen-jun, Xu De-qiang, et al. Remediation of historic marble architectural heritages by bacterially-induced biomineralization[J]. Journal of South China University of Technology (Natural Science Edition), 2009, 37(9): 36-41.
12 李沛豪, 屈文俊. 细菌诱导碳酸钙沉积修复混凝土裂缝[J]. 土木工程学报, 2010, 43(11): 64-70.
Li Pei-hao, Qu Wen-jun. Remediation of concrete cracks by bacterially-induced calcium carbonate deposition[J]. China Civil Engineering Journal, 2010, 43(11): 64-70.
13 钱春香, 罗勉, 潘庆丰, 等. 自修复混凝土中微生物矿化方解石的形成机理[J]. 硅酸盐学报, 2013, 41(5): 620-626.
Qian Chun-xiang, Luo Mian, Pan Qing-feng, et al. Mechanism of microbially induced calcite precipitation in self-healing concrete[J]. Journal of the Chinese Ceramic Society, 2013, 41(5): 620-626.
14 GB/T 50082—2009. 普通混凝土长期性能与耐久性能试验方法标准[S].
[1] 蒲黔辉,刘静文,赵刚云,严猛,李晓斌. 高性能树脂混凝土加固混凝土偏压柱承载力理论分析[J]. 吉林大学学报(工学版), 2020, 50(2): 606-612.
[2] 张淼,钱永久,张方,朱守芹. 基于增大截面法的混凝土加固石拱桥空间受力性能试验分析[J]. 吉林大学学报(工学版), 2020, 50(1): 210-215.
[3] 王哲,谢怡,臧鹏飞,王耀. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报(工学版), 2020, 50(1): 36-43.
[4] 狄胜同,贾超,乔卫国,李康,童凯. 橡胶集料混凝土细观损伤特性的加载速率效应[J]. 吉林大学学报(工学版), 2019, 49(6): 1900-1910.
[5] 杨德磊,童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J]. 吉林大学学报(工学版), 2019, 49(6): 1891-1899.
[6] 梁宁慧,缪庆旭,刘新荣,代继飞,钟祖良. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报(工学版), 2019, 49(4): 1144-1152.
[7] 于天来,李海生,黄巍,王思佳. 预应力钢丝绳加固钢筋混凝土梁桥抗剪性能[J]. 吉林大学学报(工学版), 2019, 49(4): 1134-1143.
[8] 宋军, 石雪飞, 阮欣. 大体积混凝土热学参数识别的优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1418-1425.
[9] 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1426-1435.
[10] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[11] 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[12] 李静, 王哲. 真三轴加载条件下混凝土的力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[13] 于天来, 刘兴国, 姚爽, 穆罕默德马苏. 碳纤维筋体外预应力加固钢筋混凝土梁的疲劳性能[J]. 吉林大学学报(工学版), 2016, 46(6): 1867-1873.
[14] 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[15] 何凯, 张丽莹, 高俊俏. 稳健的基于等照度线的图像修复算法[J]. 吉林大学学报(工学版), 2016, 46(3): 929-933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!