吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1287-1295.doi: 10.13229/j.cnki.jdxbgxb20200209

• 交通运输工程·土木工程 • 上一篇    

基于不同孔径范围的碳化作用下纤维混凝土的气体渗透性能和细观结构

李艺(),苏悦琦   

  1. 东北大学 资源与土木工程学院,沈阳 110819
  • 收稿日期:2020-04-13 出版日期:2021-07-01 发布日期:2021-07-14
  • 作者简介:李艺(1972-),女,教授,博士.研究方向:混凝土材料和结构可靠性.E-mail: liyi@mail.neu.edu.cn
  • 基金资助:
    “十三五”国家重点研发计划项目(2016YFC0700801-1);辽宁省自然科学基金项目(20180510019)

Gas permeability and meso-structure of fiber reinforced concrete under carbonation based on different pore sizes

Yi LI(),Yue-qi SU   

  1. School of Resources and Civil Engineering,Northeastern University,Shenyang 110819,China
  • Received:2020-04-13 Online:2021-07-01 Published:2021-07-14

摘要:

为研究碳化后混凝土的气体渗透性能和细观结构的关系,针对普通混凝土(C)和聚丙烯-玄武岩纤维混凝土(BP)进行碳化龄期分别为0、7、14、28、56、80天碳化试验和气体渗透性试验,采用丹麦Rapidair457混凝土气孔结构分析仪获取混凝土细观结构特征参数,基于不同孔径范围、计算方法对混凝土含气量、分形维数的影响水平不同,将混凝土孔径划分为0~160、160~300、300~4000 μm三个范围,分别计算含气量和分形维数,分析碳化龄期和材料对于宏、细观性能的影响,研究混凝土气渗性能、分形维数和细观结构的内在联系,给出敏感孔径范围。结果表明:BP气体扩散系数和含气量总体上小于C,说明纤维混掺可从不同层次上改善纤维三维分布的均衡性,提高混凝土抗碳化性能。随碳化龄期增加,对于C,小孔径范围下孔隙质量分形维数的变化趋势与气体扩散系数相反程度较高;对于BP,中孔径范围下固体质量分形维数的变化趋势与气体扩散系数相反程度较高。固体质量分形维数能更好地反映混凝土内部结构的复杂程度。综合混凝土气渗性能、分形维数和细观结构分析,均可得到:小孔径范围是C的敏感孔径范围,中孔径范围是BP的敏感孔径范围。

关键词: 纤维混凝土, 碳化, 气体扩散系数, 细观结构, 分形维数

Abstract:

In order to investigate the relationship between gas permeability and meso-structure of carbonated concrete, carbonation tests and gas permeability tests of ordinary concrete (OC) and polypropylene basalt fiber concrete (BP) with 0, 7, 14, 28, 56 and 80 days carbonation were performed respectively. The parameters of concrete meso-structure were obtained by RapidAir 457 concrete pore structure analyzer (Denmark). Based on the influence levels of different pore size ranges and calculation methods on the air content and fractal dimension of concrete, the pore size of concrete is divided into 0-160 μm, 160-300 μm, 300-4000 μm. The air content and fractal dimension were calculated respectively. The influences of carbonation age and materials on the macroscopic and microscopic properties were analyzed. The internal relationship among the gas permeability, fractal dimension and meso-structure of concrete was studied. Then, the sensitive pore size range was given. The results show that the gas diffusion coefficient and air content of BP are less than that of OC in general, which shows that hybrid can improve the carbonation resistance of concrete by improving the balance of three-dimensional distribution of fiber from different levels. With carbonization age increasing, for OC, the correlation between pore mass fractal dimension in small pore size range and gas diffusion coefficient is higher than other ranges. For BP, the correlation between solid mass fractal dimension in medium pore size range and gas diffusion coefficient is higher than other ranges. The solid mass fractal dimension is employed to characterize the concrete internal structure more accurately than pore mass fractal dimension. Based on the comprehensive analysis of air permeability, fractal dimension and meso-structure, it is identified that the sensitive pore size range of OC is the small pore size rang, and the sensitive pore size range of BP is the medium pore size range.

Key words: fiber concrete, carbonization, gas diffusion coefficient, meso-structure, fractal dimensi

中图分类号: 

  • TU528

表1

纤维物理性能指标"

品种代号纤维种类纤维类型抗拉强度/MPa弹性模量/GPa长度/mm
A玄武岩束状单丝10503430
B聚丙烯束状单丝2763.819

表2

混凝土配合比"

编号水/kg水泥/kg砂子/kg碎石/kg减水剂/kg聚丙烯纤维/kg玄武岩纤维/kg
C18442871310713.42400
BP18442871310713.4240.92.5

图1

碳化后混凝土的气体扩散系数"

图2

混凝土孔隙弦长频率和含气量"

图3

混凝土各孔径阶段下的含气量"

图4

小孔径范围下混凝土的分形维数"

图5

中孔径范围下混凝土的分形维数"

图6

大孔径范围下混凝土的分形维数"

图7

混凝土含气量和分形维数的关系"

表3

混凝土含气量与分形维数的拟合参数"

类别P斜率截距R2
C10.033 1-0.002 320.995 760.718 47
C20.000 3-0.018 971.002 010.972 64
C30.001 4-0.005 021.000 900.939 60
BP10.002 5-0.003 721.001 170.919 52
BP20.002 9-0.014 630.999 390.913 77
BP30.003 5-0.002 540.997 440.904 61
1 Dong L F, Zhang S P. Effect of steel fiber on comprehensive performance of concrete materials[J]. Applied Mechanics and Materials, 2015, 723:440-444.
2 Liu J, Yao S, Ba M, et al. Effects of carbonation on micro structures of hardened cement paste[J]. Journal of Wuhan University of Technology (Mater Sci Ed), 2016, 31(1):146-150.
3 Lu Bao, Shi Cai-jun, Cao Zhi-jie, et al. Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete[J]. Journal of Cleaner Production,2019,233:421-428.
4 郭子麟. 单面冻融条件下玄武岩纤维混凝土孔结构及力学性能研究[D]. 包头:内蒙古工业大学土木工程学院, 2018.
Guo Zi-lin. Study on pore structure and mechanical properties of basalt fiber reinforced concrete under single-sided freeze-thaw condition[D]. Baotou: School of Civil Engineering,Inner Mongolia University of Technology, 2018.
5 Jin S, Zhang J, Han S. Fractal analysis of relation between strength and pore structure of hardened mortar[J]. Construction and Building Materials, 2017, 135:1-7.
6 张俊芝, 吕萌, 方赵峰, 等. 基于核磁共振的粉煤灰混凝土水和气体渗透性与孔结构的研究[J]. 南昌工程学院学报, 2018,37(6):63-70.
Zhang Jun-zhi, Lü Meng, Fang Zhao-feng, et al. Study on water and gas permeability and pore structure of fly ash concrete based on NMR[J]. Journal of Nanchang Institute of Technology, 2018, 37(6): 63-70.
7 Bu J, Tian Z. Relationship between pore structure and compressive strength of concrete: experiments and statistical modeling[J]. Sādhanā, 2016, 41(3):1-8.
8 郭明磊, 肖佳, 左胜浩. 水泥-石灰石粉胶凝材料孔结构多重分形特征以及与渗透性的关系[J]. 硅酸盐学报,2019,47(5):1-8.
Guo Ming-lei, Xiao Jia, Zuo Sheng-hao. Multifractal characteristics of pore structure of cement limestone cementitious materials and its relationship with permeability [J]. Journal of the Chinese Ceramic Society, 2019,47(5): 1-8.
9 宋凯强. 混杂纤维混凝土碳化性能与孔结构研究[D]. 沈阳:东北大学资源与土木工程学院,2017.
Song Kai-qiang. Study on carbonation performance and pore structure of hybrid fiber concrete[D]. Shenyang: School of Resources and Civil Engineering of Northeast University, 2017.
10 Perrier E M A, Bird N R A. Modelling soil fragmentation: the pore solid fractal approach[J]. Soil & Tillage Research,2002,64(1):91-99.
11 Vahab Naderi Zarnaghi, Fouroghi-Asl Ali, Nourani Vahid, et al. On the pore structures of lightweight self-compacting concrete containing silica fume[J]. Construction and Building Materials,2018,193:557-564.
12 Gao Yun, Wu Kai, Jiang Jin-yang. Examination and modeling of fractality for pore-solid structure in cement paste: starting from the mercury intrusion porosimetry test[J]. Construction and Building Materials,2016,124:237-243.
13 侯超群, 席瑶, 孙志彬, 等. 基于IPP图像处理的膨胀土微观结构定量研究[J].水文地质工程地质,2019,46(2):156-161.
Hou Chao-qun, Xi Yao, Sun Zhi-bin, et al. Quantitative study on microstructure of expansive soil based on IPP image processing[J]. Hydrogeology & Engineering Geology, 2019,46(2): 156-161.
14 张文生, 张建波, 李建勇, 等.混凝土孔隙面分形特征与测试方法研究[J]. 建筑材料学报,2012,15(3):312-316.
Zhang Wen-sheng, Zhang Jian-bo, Li Jian-yong, et al. Study on fractal characteristics and test methods of concrete pore surface[J]. Journal of Building Materials, 2012,15(3): 312-316.
15 丁一宁,马跃,郝晓卫.基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响[J].复合材料学报:2020,37(11): 2908-2916.
Ding Yi-ning, Ma Yue, Hao Xiao-wei. Analysis of the influence of crack shape on the permeability of fiber / concrete based on fractal theory[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2908-2916.
16 Cui Shen-gai, Liu Pin, Cui En-qi, et al. Experimental study on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high geothermal tunnels[J]. Construction and Building Materials, 2018, 173:124-135.
17 Almeida A E F S, Tonoli G H D, Santos S F, et al. Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age[J]. Cement and Concrete Composites, 2013, 42:49-58.
18 Li Yang, Fu Teng-huan, Wang Rui-jun, et al. An assessment of microcracks in the interfacial transition zone of recycled concrete aggregates cured by CO2[J]. Construction and Building Materials, 2020, 236: 214-221.
19 Flores Medina N, Barluenga G, Hernández-Olivares F. Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of Polypropylene fibers[J]. Composites Part B, 2014,61:214-221.
20 赵燕茹, 郭子麟, 范晓奇, 等.玄武岩纤维混凝土应力应变关系及孔结构分析[J].硅酸盐通报,2017,36(12):4142-4150.
Zhao Yan-ru, Guo Zi-lin, Fan Xiao-qi, et al. Stress strain relationship and pore structure analysis of basalt fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36 (12): 4142-4150.
21 Qing Lü, Qiu Qing-li, Zheng Jun, et al. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability[J]. Construction and Building Materials,2019,No.228.
22 刘俊亮, 田长安, 曾燕伟, 等. 分形多孔介质孔隙微结构参数与渗透率的分维关系[J].水科学进展,2006(6):812-817.
Liu Jun-liang, Tian Chang-an, Zeng Yan-wei, et al. Fractal dimension relationship between pore microstructure parameters and permeability of fractal porous media [J]. Advance in Water Science, 2006(6): 812-817.
[1] 修文翠,吴化,韩英,刘云旭. 等温热处理温度对超级贝氏体组织与性能的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 520-525.
[2] 李晓珍,柳俊哲,戴燕华,贺智敏,巴明芳,李玉顺. 碳化作用下水泥浆内亚硝酸根离子的含量分布[J]. 吉林大学学报(工学版), 2019, 49(4): 1162-1168.
[3] 祝宏, 张海, 唐高弟, 李中云, 刘以农. 基于信息维数的欺骗干扰存在性检测[J]. 吉林大学学报(工学版), 2016, 46(2): 616-620.
[4] 柳俊哲, 袁伟静, 贺智敏, 巴明芳, 陈剑斌. 碳化对混凝土碱骨料反应的影响[J]. 吉林大学学报(工学版), 2015, 45(3): 783-787.
[5] 富爽,李一兵,叶方,高振国. 利用频域Sevcik分形维数进行快速盲频谱感知[J]. 吉林大学学报(工学版), 2014, 44(3): 854-860.
[6] 吴晓璇, 倪志伟, 倪丽萍. 基于分形维数的聚类融合算法[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 364-367.
[7] 杨冬风, 马秀莲. 基于分形纹理分析的蛋壳裂纹识别[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 348-352.
[8] 孟松鹤, 高慧婷, 孙莉安, 史洪军. 硅灰-矿渣对聚丙烯纤维混凝土性能的影响[J]. 吉林大学学报(工学版), 2010, 40(增刊): 214-0217.
[9] 何凯, 晏磊. 利用随机中点替代法改进遥感影像分维算法[J]. 吉林大学学报(工学版), 2005, 35(06): 617-0620.
[10] 高论, 连相明, 刘向阳, 王立江. 无磨料低温抛光件表面分形特性[J]. 吉林大学学报(工学版), 2004, (1): 7-11.
[11] 崔向红, 王树奇, 吴宏, 姜启川. 变质莱氏体钢中共晶碳化物的热处理粒化[J]. 吉林大学学报(工学版), 2002, (1): 42-46.
[12] 崔向红, 孙国恩, 吕晓霞, 姜启川, 何镇明. 具有粒状碳化物的新型莱氏体铸造模具钢的组织与性能[J]. 吉林大学学报(工学版), 2000, (2): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!