吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 520-525.doi: 10.13229/j.cnki.jdxbgxb20190012

• 材料科学与工程 • 上一篇    

等温热处理温度对超级贝氏体组织与性能的影响

修文翠1,2(),吴化1(),韩英1,刘云旭1   

  1. 1.长春工业大学 先进结构材料省部共建教育部重点实验室,长春 130012
    2.吉林农业科技学院 机械与土木工程学院,吉林省 吉林市 132101
  • 收稿日期:2019-01-04 出版日期:2020-03-01 发布日期:2020-03-08
  • 通讯作者: 吴化 E-mail:xiuwencui@jlnku.edu.cn;wuhua@ccut.edu.cn
  • 作者简介:修文翠(1982-),女,讲师,博士研究生.研究方向:金属材料强韧化.E-mail:xiuwencui@jlnku.edu.cn
  • 基金资助:
    国家自然科学基金项目(51171030);吉林农业科技学院青年基金项目(2017214);吉林农业科技学院现代农业机械化与信息化创新团队项目(2017005)

Effect of isothermal heat treatment temperature on microstructure and mechanical properties of super bainite

Wen-cui XIU1,2(),Hua WU1(),Ying HAN1,Yun-xu LIU1   

  1. 1.Key Laboratory of Advanced Structural Materials of Ministry of Education,Changchun University of Technology,Changchun 130012, China
    2.School of Mechanical and Civil Engineering,Jilin Agricultural Science and Technology University, Jilin 132101, China
  • Received:2019-01-04 Online:2020-03-01 Published:2020-03-08
  • Contact: Hua WU E-mail:xiuwencui@jlnku.edu.cn;wuhua@ccut.edu.cn

摘要:

研究了70Si2Mn2CrMo钢经不同温度等温热处理后,产生超级贝氏体组织转变的同时,碳化物析出的情况以及对其力学性能的影响。通过对试样的显微组织和力学性能的检测分析,确定了碳化物析出的温度及类型;同时表明,由于碳化物析出减少了过冷奥氏体中C含量,致使其稳定性下降,超级贝氏体中残余奥氏体质量分数减少。与220 ℃等温热处理没有碳化物析出的样品相比较,245 ℃等温热处理样品的抗拉强度降低11%,强塑积降低16%,疲劳循环断裂次数降低55%。

关键词: 金属材料, 超级贝氏体, 碳化物析出, 等温热处理温度, 力学性能

Abstract:

In order to study the super-bainite structure transformation of 70Si2Mn2CrMo steel after isothermal heat treatment at different temperatures, the precipitation of carbide and its mechanical properties were studied. The temperature and type of carbide precipitation were determined by the analysis of the microstructure and mechanical properties of the sample. It is shown that the precipitation of carbide reduces the carbon content in the overcooling austenite, resulting in low stability of the steel and the volume fraction of retained austenite in super-bainite is reduced. Compared with the sample of no carbide precipitation at 220 °C isothermal heat treatment, the tensile strength of the sample steel decreased by 11%, the strong plastic product decreased by 16%, and the fatigue cycle fracture times decreased by 55%, at 245 ° C isothermal heat treatment.

Key words: metal material, super-bainite, carbide precipitation, isothermal heat treatment temperature, mechanical property

中图分类号: 

  • TG142.1

图1

试验钢热处理工艺曲线图"

表1

试验钢热处理工艺参数"

实验号温度TA/℃,时间/h温度T/℃,时间/h
1910,1195,48
2910,1220,48
3910,1245,48
4910,1350,48

图2

不同温度等温热处理后试样的组织形貌"

表2

不同温度等温热处理后试样的硬度值"

等温温度/℃硬度值/HRC
35043
24551
22054
19556

图3

不同温度等温热处理后试样的TEM像及其衍射斑点标定"

图4

不同温度等温热处理试样的XRD衍射图"

表3

不同温度等温热处理试样组织中残余奥氏体量及其碳含量"

等温热处理温度/℃残余奥氏体质量分数/%残余奥氏体中C质量分数/%
2457.730 00.878 7
2208.416 91.020 4
1955.079 31.090 9

图5

220 ℃和245 ℃等温热处理后样品的拉伸应力应变曲线"

表4

220、245 ℃等温热处理后样品的拉伸与疲劳试验数据"

等温处理温度/℃抗拉强度/MPa伸长率/%强塑积/(MPa·%)疲劳断裂/103
2202 3477.6417 931184
2452 0827.2415 07483

图6

不同温度等温热处理后样品的疲劳断口形貌"

1 Caballero F G, Bhadeshia H K D H. Very strong bainite[J]. Current Opinion in Solid State & Materials Science, 2004, 8(3): 251-257.
2 Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bimodal size-distribution of bainite plates[J]. Materials Science & Engineering A, 2006, 438-440: 145-148.
3 Luzginova N V, Zhao L, Sietsma J. Bainite formation kinetics in high carbon alloyed steel[J]. Materials Science & Engineering A, 2008, 481: 766-769.
4 Han Y, Wu H, Liu C, et al. Microstructures and mechanical characteristics of a medium carbon super-bainitic steel after isothermal transformation[J]. Journal of Materials Engineering & Performance, 2014, 23(12): 4230-4236.
5 Podder A S, Bhadeshia H K D H. Thermal stability of austenite retained in bainitic steels[J]. Materials Science & Engineering: A, 2010, 527(7/8): 2121-2128.
6 Wu H, Liu C, Zhao Z B, et al. Design of air-cooled bainitic microalloyed steel for a heavy truck front axle beam[J]. Materials and Design, 2006, 27(8): 651-656.
7 Soliman M, Mostafa H, El-Sabbagh A S, et al. Low temperature bainite in steel with 0.26 wt% C[J]. Materials Science & Engineering: A, 2010, 527(29/30): 7706-7713.
8 吴化. 低合金高强度高塑性复相钢材的成分设计[D]. 上海: 东华大学材料科学与工程学院, 2007.
Wu Hua. Composition design of low alloy high strength and plasticity complex phases steels[D]. Shanghai: College of Materials Science and Engineering, Donghua University, 2007.
9 陈连生, 张健杨, 田亚强, 等. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响[J]. 金属学报, 2015, 51(5): 527-536.
Chen Lian-sheng, Zhang Jian-yang, Tian Ya-qiang, et al. Effect of Mn pre-partitioning on C partitioning and retained qustenite of Q&P steels[J]. Acta Metallurgica Sinice, 2015, 51(5): 527-536.
10 Misra A, Sharma S, Sangal S, et al. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels[J]. Materials Science & Engineering: A, 2012, 558: 725-729.
11 康沫狂, 朱明, 陈大明, 等. 硅合金钢淬火组织中残留奥氏体的力学稳定性与力学性能[J]. 金属热处理, 2005, 30(1): 14-19.
Kang Mo-kuang, Zhu Ming, Chen Da-ming, et al. Mechanical property and mechanical stability of retained austenite in quenching microstructure of an alloy steel containing Si[J]. Heat Treatment of Metals, 2005, 30(1): 14-19.
12 Sourmail T, Smanio V. Low temperature kinetics of bainite formation in high carbon steels[J]. Acta Materialia, 2013, 61(7): 2639-2648.
13 刘宗昌, 王海燕, 王玉峰, 等. 贝氏体碳化物的形貌及形成机制[J]. 材料热处理学报, 2008, 29(1): 32-37, 46.
Liu Zong-chang, Wang Hai-yan,Wang Yu-feng, et al. Morphology and formation mechanism of bainitic carbide[J]. Transactions of Materials and Heat Treatment, 2008, 29(1): 32-37, 46.
14 蔡珣. 材料科学与工程基础[M]. 上海: 上海交通大学出版社, 2010.
15 Bhadeshia H K D H. High performance bainitic steels[J]. Materials Science Forum, 2005, 500/501: 63-74.
16 范雄. 金属X射线学[M]. 北京: 机械工业出版社, 1981.
17 吴万国, 阮玉忠, 黄清明. 残余奥氏体定量分析的特殊方法[J]. 福州大学学报: 自然科学版, 2002, 30(3): 385-386.
Wu Wan-guo, Ruan Yu-zhong, Huang Qing-ming. A special method on quantitative analysis of remnant austenite[J]. Journal of Fuzhou University (Natural Science Edition), 2002, 30(3): 385-386.
18 Mandal D, Ghosh M, Pal J, et al. Effect of austempering treatment on microstructure and mechanical properties of high-Si steel[J]. Journal of Materials Science, 2009, 44(4): 1069-1075
19 Xiu W C, Han Y, Liu C, et al. Cyclic stress induced phase transformation in super-bainitic microstructure[J]. Chinese Physics B, 2017, 26(3): 545-549.
[1] 宫文彪,朱芮,郄新哲,崔恒,宫明月. 6082铝合金超厚板搅拌摩擦焊接头组织与性能[J]. 吉林大学学报(工学版), 2020, 50(2): 512-519.
[2] 陈学文,王继业,杨喜晴,皇涛,宋克兴. Cr8合金钢热变形行为及位错密度演变规律[J]. 吉林大学学报(工学版), 2020, 50(1): 91-99.
[3] 王金国,任帅,闫瑞芳,黄恺,王志强. TiC颗粒对铸态球墨铸铁组织和力学性能的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 2010-2018.
[4] 佟鑫,张雅娇,黄玉山,胡正正,王庆,张志辉. 选区激光熔化304L不锈钢的组织结构及力学性能分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1615-1621.
[5] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[6] 徐戊矫,刘承尚,鲁鑫垚. 喷丸处理后6061铝合金工件表面粗糙度的模拟计算及预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1280-1287.
[7] 李于朋,孙大千,宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报(工学版), 2019, 49(3): 836-841.
[8] 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805.
[9] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[10] 庄蔚敏, 赵文增, 解东旋, 李兵. 超高强钢/铝合金热铆连接接头性能[J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[11] 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[12] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[13] 汤华国, 马贤锋, 赵伟, 刘建伟, 赵振业. 高性能金属铝的制备、微观结构及其热稳定性[J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[14] 关庆丰, 张远望, 孙潇, 张超仁, 吕鹏, 张从林. 强流脉冲电子束作用下铝钨合金的表面合金化[J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[15] 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!