吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1427-1436.doi: 10.13229/j.cnki.jdxbgxb20200588
• 计算机科学与技术 • 上一篇
Li-sheng JIN1,2(),Bai-cang GUO1,Fang-rong WANG3,Jian SHI4()
摘要:
现阶段的环境感知目标检测技术多为单类目标检测,或是将一幅图像中所有目标均列为待检目标,较少有对处于车辆前方的目标进行针对性的划分和检测。为了解决以上问题,提出了将车辆前方的待检目标分为两类:一是危险性较大,随时可能发生位移的动态目标,包括四轮车辆、二轮车辆和人;二是危险性较小,不会发生位移的静态目标,包括交通信号灯和交通标识。针对危险性较大的车辆前方动态多目标,提出了一种可以移植于嵌入式端的改进YOLOv3的目标检测算法,针对原始YOLOv3算法得到模型较大,难以在嵌入式端实时检测的缺点,以轻量型骨干网络MobileNetV2替换YOLOv3原始骨干网络Darknet-53进行特征提取,在训练中加入群组归一化操作,并使用Adam作为优化器。使用提取后的BDD100K数据集进行训练,利用未参与训练的BDD100K部分数据集和自采标注的Team_test数据集进行测试。研究结果表明,相比于原始YOLOv3算法,本文算法的漏检率可以维持在5%以内,在mAP提升0.020的基础上,本文模型在参数量上较YOLOv3基础模型减小了约89%,在CPU下的Inference Time缩小了约70%。
中图分类号:
1 | Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, USA, 2005:886-893. |
2 | Platt J C. A fast algorithm for training support vector machines[J]. Journal of Information Technology, 1998, 2(5):1-28. |
3 | Felzenszwalb P, McAllester D, Ramaman D. A discriminatively trained, multiscale, deformable part model[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, USA, 2008:1-8. |
4 | Felzenszwalb P, Girshick R, McAllester D, et al. Object detection with discriminatively trained partbased models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645. |
5 | Felzenszwalb P, Girshick R, McAllester D. Cascade object detection with deformable part models[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, USA, 2010: 2241-2248. |
6 | Hinton G E, Osindero S, Teh Y. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. |
7 | 李晓飞. 基于深度学习的行人及骑车人车载图像识别方法[D]. 北京:清华大学军事交通学院, 2016. |
Li Xiao-fei. On-board pedestrian and cyclist recognition using deep learning methods[D]. Beijing: Military Transport Academy,Tsinghua University, 2016. | |
8 | 李珊珊. 基于深度学习的交通场景多目标检测[D]. 长沙:湖南大学会计学院,2017. |
Li Shan-shan. The research of multi-object detection in traffic scene based on deep learning[D]. Changsha:School of Accounting, Hunan University, 2017. | |
9 | 杨恺, 徐友春, 安相璧, 等. 基于深度学习的车辆检测方法[J]. 计算机与网络, 2018, 44(19): 58-61. |
Yang Kai, Xu You-chun, An Xiang-bi,et al. Vehicle detection method based on deep learning[J]. Computer & Network, 2018, 44(19): 58-61. | |
10 | 华夏, 王新晴, 王东, 等. 基于改进SSD的交通大场景多目标检测[J]. 光学学报, 2018, 38(12): 221-231. |
Hua Xia, Wang Xin-qing, Wang Dong, et al. Multi-objective detection of traffic scenes based on improved SSD[J]. Acta Optica Sinica, 2018, 38(12): 221-231. | |
11 | Dhall A, Dai D, van Gool L. Real-time 3D traffic cone detection for autonomous driving[C]∥The 30th IEEE Intelligent Vehicles Symposium, Paris, France, 2019: 494-501. |
12 | 李大华, 汪宏威, 高强, 等. 一种卷积神经网络的车辆和行人检测算法[J]. 激光杂志, 2020, 41(4):70-75. |
Li Da-hua, Wang Hong-wei, Gao Qiang, et al. Vehicle and pedestrian detection algorithm based on convolutional neural network[J]. Laser Journal, 2020, 41(4):70-75. | |
13 | 新华网. 报告显示:2019年我国外卖行业交易额预计超6000亿元[J]. 中国食品学报, 2020, 20(1):157. |
net Xinhua. Report shows: in 2019, China's foreign sales industry transactions are expected to exceed 600 billion yuan[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1):157. | |
14 | Girshick R, Donahue J, Darrelland T, et al. Rich feature hierarchies for object detection and semantic segmentation[C]∥The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, 2014: 580-587. |
15 | Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]∥The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779-788. |
16 | Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6517-6525. |
17 | Redmon J, Farhadi A. YOLOv3: an incremental improvement[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018. |
18 | Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 936-944. |
19 | Mark Sandler, Andrew Howard, Zhu Meng-long, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 4510-4520. |
20 | Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[Z]. arXiv preprint arXiv:, 2017. |
21 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770-778. |
22 | Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]∥International Conference on International Conference on Machine Learning, Lile, France, 2015: 448-456. |
23 | Wu Yu-xin, He Kai-ming. Group normalization[C]∥European Conference on Computer Vision(ECCV), Munich, Germany,2018: 3-19. |
24 | Qian N. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999, 12(1):145-151. |
25 | Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7):257-269. |
26 | Kingma D, Ba J. Adam: a method for stochastic optimization[DB/OL]. [2018-10-22]. . |
27 | Yu F, Xian W, Chen Y, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 2633-2642. |
[1] | 于向军,槐元辉,姚宗伟,孙中朝,俞安. 工程车辆无人驾驶关键技术[J]. 吉林大学学报(工学版), 2021, 51(4): 1153-1168. |
[2] | 李锦青,周健,底晓强. 基于循环生成对抗网络的学习型光学图像加密方案[J]. 吉林大学学报(工学版), 2021, 51(3): 1060-1066. |
[3] | 宋震,李俊良,刘贵强. 基于深度学习和限幅模糊的变转速液压动力源恒流量预测方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1106-1110. |
[4] | 袁哲明,袁鸿杰,言雨璇,李钎,刘双清,谭泗桥. 基于深度学习的轻量化田间昆虫识别及分类模型[J]. 吉林大学学报(工学版), 2021, 51(3): 1131-1139. |
[5] | 彭博,张媛媛,王玉婷,唐聚,谢济铭. 基于自动编码机-分类器的视频交通状态自动识别[J]. 吉林大学学报(工学版), 2021, 51(3): 886-892. |
[6] | 赵宏伟,刘晓涵,张媛,范丽丽,龙曼丽,臧雪柏. 基于关键点注意力和通道注意力的服装分类算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1765-1770. |
[7] | 谌华,郭伟,闫敬文,卓文浩,吴良斌. 基于深度学习的SAR图像道路识别新方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1778-1787. |
[8] | 郜峰利,陶敏,李雪妍,何昕,杨帆,王卓,宋俊峰,佟丹. 基于深度学习的CT影像脑卒中精准分割[J]. 吉林大学学报(工学版), 2020, 50(2): 678-684. |
[9] | 徐谦,李颖,王刚. 基于深度学习的行人和车辆检测[J]. 吉林大学学报(工学版), 2019, 49(5): 1661-1667. |
[10] | 郭立民,陈鑫,陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报(工学版), 2019, 49(3): 1000-1008. |
[11] | 王新竹, 李骏, 李红建, 尚秉旭. 基于三维激光雷达和深度图像的自动驾驶汽车障碍物检测方法[J]. 吉林大学学报(工学版), 2016, 46(2): 360-365. |
[12] | 李抵非, 田地, 胡雄伟. 基于分布式内存计算的深度学习方法[J]. 吉林大学学报(工学版), 2015, 45(3): 921-925. |
[13] | 王荣本;李琳辉;郭烈;金立生;张明恒 . 基于立体视觉的越野环境感知技术[J]. 吉林大学学报(工学版), 2008, 38(03): 520-0524. |
|