吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 678-684.doi: 10.13229/j.cnki.jdxbgxb20190623
• 计算机科学与技术 • 上一篇
郜峰利1,2(),陶敏1,2,李雪妍1,2,何昕3,杨帆3,王卓3,宋俊峰1,2,佟丹3()
Feng-li GAO1,2(),Min TAO1,2,Xue-yan LI1,2,Xin HE3,Fan YANG3,Zhuo WANG3,Jun-feng SONG1,2,Dan TONG3()
摘要:
为解决脑卒中病变的人工定位和定量分析耗时且缺乏一致性的问题,提出了基于多尺度U-Net深度网络模型,从非增强计算机断层扫描影像中分割脑卒中病变的高密度征,同时使用Dice损失函数训练模型以对抗数据中类不平衡问题。实验数据表明:该模型可端到端的以数据驱动的方式自动学习高密度征显著特征,有效地分割脑部小病灶区域。
中图分类号:
1 | Kassebaum N J, Bertozzi-Villa A, Coggeshall M S, et al. Global, regional, and national levels and causes of maternal mortality during 1990-2013: a systematic analysis for the global burden of disease study 2013[J]. The Lancet, 2014, 384( 9947): 980- 1004. |
2 | Doyle K P, Simon R P, Stenzel-Poore M P. Mechanisms of ischemic brain damage[J]. Neuropharmacology, 2008, 55( 3): 310- 318. |
3 | Wang W, Wang D, Liu H, et al. Trend of declining stroke mortality in China: reasons and analysis[J]. Stroke and Vascular Neurology, 2017, 2( 3): 132- 139. |
4 | Ariesen M J, Claus S P, Rinkel G J E, et al. Risk factors for intracerebral hemorrhage in the general population: a systematic review[J]. Stroke, 2003, 34( 8): 2060- 2066. |
5 | Mullins M E, Schaefer P W, Sorensen A G, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department[J]. Radiology, 2002, 224( 2): 353- 360. |
6 | Chalela J A, Kidwell C S, Nentwich L M, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison[J]. The Lancet, 2007, 369( 9558): 293- 298. |
7 | Rekik I, Allassonniere S, Carpenter T K, et al. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal[J]. Neuroimage: Clinical, 2012, 1( 1): 164- 178. |
8 | Barber P, Demchuk A, Zhang J, et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score[J]. The Lancet, 2000, 355( 9216): 1670- 1674. |
9 | Herweh C, Ringleb P A, Rauch G, et al. Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients[J]. International Journal of Stroke, 2016, 11( 4): 438- 445. |
10 | Nagel S, Sinha D, Day D, et al. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients[J]. International Journal of Stroke, 2017, 12( 6): 615- 622. |
11 | Takahashi N, Lee Y, Tsai D Y, et al. An automated detection method for the MCA dot sign of acute stroke in unenhanced CT[J]. Radiological Physics and Technology, 2014, 7( 1): 79- 88. |
12 | Chen Y, Dhar R, Heitsch L, et al. Automated quantification of cerebral edema following hemispheric infarction: application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs[J]. Neuroimage Clinical, 2016, 12: 673- 680. |
13 | Mitra J, Bourgeat P, Fripp J, et al. Lesion segmentation from multimodal MRI using random forest following ischemic stroke[J]. Neuroimage, 2014, 98: 324- 335. |
14 | 贾迪, 杨金柱, 张一飞, 等. 自适应脑组织影像分割[J]. 吉林大学学报: 工学版, 2012, 42( 1): 161- 165. |
Jia Di, Yang Jin-zhu, Zhang Yi-fei, et al. Self-adapting segmentation for brain tissue[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42( 1): 161- 165. | |
15 | Shin H C, Roth H R, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35( 5): 1285- 1298. |
16 | Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks[J]. Neuroimage: Clinical, 2017, 15: 633- 643. |
17 | Zhang R, Zhao L, Lou W, et al. Automatic segmentation of acute ischemic stroke from DWI using 3D fully convolutional DenseNets[J]. IEEE Transactions on Medical Imaging, 2018, 37( 9): 2149- 2160. |
18 | Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521( 7553): 436- 444. |
19 | Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39( 4): 640- 651. |
20 | Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 40( 4): 834- 848. |
21 | Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]∥ International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 2015: 234- 241. |
22 | Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning[J]. arXiv preprint: arXiv:1712. 04621. |
23 | Jiang H, Rong R, Wu J, et al. Skin lesion segmentation with improved C-UNet networks[J/OL].[ 2018-08-01]. |
24 | 郭继昌, 吴洁, 郭春乐, 等. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报: 工学版, 2019, 49( 5): 1726- 1734. |
Guo Ji-chang, Wu Jie, Guo Chun-le, et al. Image super-resolution reconstruction based on residual connection convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49( 5): 1726- 1734. | |
25 | Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]∥ Thirty-First AAAI Conference on Artificial Intelligence. AAAI Publications, 2016: 4287- 4284. |
26 | Perone C S, Calabrese E, Cohenadad J. Spinal cord gray matter segmentation using deep dilated convolutions[J]. Scientific Reports, 2018, 8( 1): 1- 13. |
27 | Kingma D P, Ba J. Adam: a method for stochastic optimization[C]∥3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings, San Diego, 2015: 1- 13. |
[1] | 徐谦,李颖,王刚. 基于深度学习的行人和车辆检测[J]. 吉林大学学报(工学版), 2019, 49(5): 1661-1667. |
[2] | 郭立民,陈鑫,陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报(工学版), 2019, 49(3): 1000-1008. |
[3] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[4] | 肖明尧, 李雄飞, 张小利, 张刘. 基于多尺度的区域生长的图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597. |
[5] | 刘仲民, 李战明, 李博皓, 胡文瑾. 基于稀疏矩阵的谱聚类图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313. |
[6] | 赵夫群, 周明全, 耿国华. 基于GA-Otsu法的图像阈值分割及定量识别[J]. 吉林大学学报(工学版), 2017, 47(3): 959-964. |
[7] | 肖明尧, 李雄飞. 基于高斯分解的多尺度3D Otsu阈值分割算法[J]. 吉林大学学报(工学版), 2017, 47(1): 255-261. |
[8] | 王培智, 田地, 龙涛, 李抵非, 邱春玲, 刘敦一. 用于TOF-SIMS的锆石样品图像自动聚焦算法[J]. 吉林大学学报(工学版), 2017, 47(1): 308-315. |
[9] | 申铉京, 张赫, 陈海鹏, 王玉. 快速递归多阈值分割算法[J]. 吉林大学学报(工学版), 2016, 46(2): 528-534. |
[10] | 郑欣, 彭真明, 邢艳. 基于活跃度的图像分割算法性能评价新方法[J]. 吉林大学学报(工学版), 2016, 46(1): 311-317. |
[11] | 李一兵, 杨鹏, 叶方, 刘丹丹. 基于交互势函数和均场参数估计的分层MRF模型的纹理图像分割[J]. 吉林大学学报(工学版), 2015, 45(6): 2075-2079. |
[12] | 李抵非, 田地, 胡雄伟. 基于分布式内存计算的深度学习方法[J]. 吉林大学学报(工学版), 2015, 45(3): 921-925. |
[13] | 李雄飞1, 2, 赵浩宇1, 陈霄3, 赵宏伟1, 2. 基于视觉特征的不规则形状目标分割方法[J]. 吉林大学学报(工学版), 2014, 44(4): 1140-1144. |
[14] | 张金果,郭海涛,吴君鹏,李依桐. 改进的最小交叉Tsallis熵的小目标声呐图像分割[J]. 吉林大学学报(工学版), 2014, 44(3): 834-839. |
[15] | 杨扬, 戴明, 周箩鱼, 孙明超. 基于非下采样Bandelet变换的多聚焦图像融合[J]. 吉林大学学报(工学版), 2014, 44(2): 525-530. |
|